首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
增温对杉木幼树细根分泌物的影响研究初报   总被引:1,自引:0,他引:1  
正全球变暖愈演愈烈,IPCC(2013)报告指出21世纪末全球平均气温增幅可能超过1.5~2℃[1],许多研究表明,森林生态系统的地上和地下生态过程可能直接或间接地受到温度升高的影响[2]。根系分泌物是植物地下碳输入的重要渠道,每年的碳输入可占光合产物的5%~21%[3],因为大多数根系分泌物可以被微生物直接利用,它是驱动森林生态系统中碳循环的主要有机碳源[4]。根系分泌物主要包  相似文献   

2.
全球变暖已成为不争的事实,IPCC第四次评估报告中预测到本世纪末全球地表平均增温1.1-6.4℃。大量研究表明,温度升高可能直接或间接地影响森林生态系统的地上和地下生态过程,有关全球变暖对地上部分的影响在过去十几年已有许多报道,而到目前为止地下部分,包括根系、土壤等了解还十分有限。特别是在森林生态系统中,细根是植物吸收水分和养分,土壤碳输入以及土壤微生物活性的关键环节,对调控生态系统碳平衡以及对全球变化的响应发挥着重要的作用。  相似文献   

3.
为了揭示中国重要人工林树种杉木(Cunninghamia lanceolata)对全球变暖的地下响应及其适应性,通过在福建省三明市陈大国有林场设置杉木幼苗土壤增温实验(增温5℃和不增温2个处理,各5个重复),采用内生长环法,在增温后的第2年和第3年进行4次(2015年1月、7月,2016年1月、7月)细根(分0~1 mm和1~2 mm 2个分级)取样,研究土壤增温对杉木幼苗细根化学计量学特征(C、N、P浓度,C/N和N/P)的影响。结果表明:1)增温处理使2015年1月0~1 mm细根C浓度显著降低,但在2016年的2次取样中则显著降低了1~2 mm细根的C浓度。增温使前2次取样中0~1 mm细根和前3次取样中1~2 mm细根N浓度显著提高、C/N降低;但此后由于增温对土壤N有效性的促进作用减弱,增温对细根N浓度的影响不显著甚至降低,细根C/N提高。2)增温使第3次、第4次取样中0~1 mm细根和第4次取样中1~2 mm细根的P浓度显著降低;同时在大部分取样时间中增温提高了细根的N/P。3)随着苗木的生长,细根呈现出C浓度和C/N升高、N浓度和N/P降低的趋势;而P浓度则仅在对照0~1 mm细根表现出上升的趋势。可见,土壤增温引起了细根N富集,细根P浓度降低,N/P升高,因而杉木生长可能受P限制。  相似文献   

4.
杉木幼苗细根呼吸对土壤增温的驯化   总被引:1,自引:0,他引:1  
细根呼吸对土壤增温的响应可以影响气候变暖与土壤CO_2排放之间的正反馈强度。为探究杉木(Cunninghamia lanceolata)幼苗细根呼吸对土壤增温的驯化情况,在福建省三明市陈大国有林场开展杉木幼苗土壤增温试验,设置对照(CT)和增温(W,+4℃)两种处理,每种处理6个重复。并在春季(4月)、夏季(8月)和秋季(10月)测定了细根比根呼吸速率(参比温度为20℃)、氮浓度和非结构性碳浓度。结果表明:比根呼吸对土壤增温产生部分驯化:在参比温度下,春季和秋季土壤增温提高了比根呼吸速率,而夏季增温处理的比根呼吸速率低于对照。细根氮浓度和非结构性碳浓度则没有受到土壤增温的显著影响。这表明土壤增温并未通过影响底物浓度和细根氮含量而影响细根呼吸。  相似文献   

5.
采用土钻法对福建三明杉木人工林样地进行根系采样,主要分析了0~80om土层杉木及林下植被≤1mm和1~2mm细根的生物量及形态特征,结果表明:0—80cm土层内杉木和林下植被≤1mm细根生物量分别为191.1g/m^2、32.83g/m^2,1—2mm细根分别为207.5/m^2、10.86g/m^2;≤1mm细根根长分别为5059.67m/m2、1076.27m/m2,1~2mm细根根长分别为962.87m/m^2、52.23m/m^2;≤1mm细根表面积分别为24.62m^2/m^2、3.41m^2/m^2,1—2mm细根表面积分别为3.39m^2/m^2、0.15m^2/m^2.林下植被≤1mm细根的生物量、根长及表面积占其总细根生物量、总根长和总表面积的比例均远高于杉木的.杉木人工林中,杉木≤1mm细根的比根长大于林下植被,而组织密度则小于林下植被;杉木1~2mm细根的比根长略小于林下植被,组织密度也小于林下植被.杉木和林下植被各个径级细根生物量的垂直分布格局基本一致,大致表现为随土层增加呈减少的趋势;根长和表面积垂直分布规律并不明显,但均表现出表层土壤大于底层土壤.各个土层杉木细根的生物量、根长和表面积所占比例明显大于林下植被.0—10cm土层中≤1mm细根林下植被生物量、根长、表面积所占总的生物量、根长、表面积的比例大于杉木.  相似文献   

6.
杉木人工林细根寿命研究   总被引:1,自引:0,他引:1  
林木细根(≤2mm)是树木水分和养分吸收的主要器官,是陆地生态系统净生产力的重要组成部分,深入理解细根生长过程及其寿命是建立全球碳及养分循环模型的关键.本试验采用微根管技术对11年生杉木(Cunninghamia lanceolata)人工林细根生长、衰老、死亡的动态过程进行了为期1年半的监测,运用Kaplan—Meier方法估计细根存活率及中值寿命(Median root longevity,MRL),生成存活曲线(Survival curve).用对数秩检验(Log—rank test)比较不同直径、不同土层、不同季节出生的细根寿命差异程度.结果表明,细根主要出.现在雨季(3q月),以直径0~1mm的细根为主,并随观测期的延长,细根存活率下降,中值寿命为236d.直径0~1mm的细根累积存活率小于1~2mm的细根.土壤下层(20~40cm)的生存曲线在细根累积存活率达到50%以后始终高于上层(0~20cm),上下层中值寿命分别为236d和243d,这可能与土壤环境因素的垂直分布相关,下层土壤有利于延长细根寿命.不同出生时间的细根寿命不同,雨季与干季出生的细根中值寿命分别为86d和270d.  相似文献   

7.
杉木人工林细根寿命研究   总被引:3,自引:0,他引:3  
林木细根(≤2 mm)是树木水分和养分吸收的主要器官,是陆地生态系统净生产力的重要组成部分,深入理解细根生长过程及其寿命是建立全球碳及养分循环模型的关键.本试验采用微根管技术对11年生杉木(Cunninghamia lanceolata)人工林细根生长、衰老、死亡的动态过程进行了为期1年半的监测,运用Kaplan-Meier方法估计细根存活率及中值寿命(Median root longevity,MRL),生成存活曲线(Survival curve).用对数秩检验(Log-rank test)比较不同直径、不同土层、不同季节出生的细根寿命差异程度.结果表明,细根主要出现在雨季(3-8月),以直径0~1 mm的细根为主,并随观测期的延长,细根存活率下降,中值寿命为236 d.直径0~1 mm的细根累积存活率小于1~2 mm的细根.土壤下层(20~40 cm)的生存曲线在细根累积存活率达到50%以后始终高于上层(0~20 cm),上下层中值寿命分别为236 d和243 d,这可能与土壤环境因素的垂直分布相关,下层土壤有利于延长细根寿命.不同出生时间的细根寿命不同,雨季与干季出生的细根中值寿命分别为86 d和270 d.  相似文献   

8.
土壤增温及降雨隔离对杉木幼林林下植被生物量的影响   总被引:3,自引:0,他引:3  
据IPCC(2007)预计到21世纪末,全球平均温度将增加1.1-6.4℃,气候变暖导致陆地生态系统干旱频繁,强降雨增多,降雨量、降雨强度和降雨格局改变,高纬度地区降雨增加而亚热带地区降雨将减少。温度和水分是驱动生态系统过程最关键的2个因素,全球变暖及降雨格局的改变将显著影响陆地生态系统的结构与功能。森林生态系统作为陆地生态系统的一个重要组成部分,其林下植被在维持森林生态系统多样性、生态功能稳定性、森林生态系统营养元素的积累和循环、水土涵养、持续生态系统生产力以及森林演替和发展、森林碳汇储量等方面具有独特的功能和作用.  相似文献   

9.
在非淹水、淹水两种水分条件下模拟氮沉降变化(分别相当于氮沉降0g/(m2.a)、1g/(m2.a)、3g/(m2.a)、5g/(m2.a))对三江平原典型湿地植物小叶章生物量及其分配的影响。结果表明,不同水分状况下氮沉降均促进小叶章生物量的积累,且以N5水平下生物量增加最多(p<0.05)。小叶章各器官生物量增长程度对氮沉降的响应并不一致:非淹水条件下根生物量平均增长最大(54.5%),其次是叶(31%)、茎(19.2%);淹水条件下小叶章各部位的生物量增长更为显著,其中根生物量平均增长124.7%,叶、茎生物量分别增长62%和61.1%。氮沉降明显促进了根生物量的积累,提高根生物量的分配比例。生长季的氮沉降对于改变湿地的营养状况、刺激植物生长具有直接的生态意义。  相似文献   

10.
黑碳添加对杉木人工林土壤微生物量碳氮的影响   总被引:1,自引:0,他引:1  
向杉木人工林土壤中分别添加不同用量黑碳,以0%(C0)、1%(C1)和5%(C5)添加量(质量分数)作为不同处理,通过28d室内培养实验,研究了黑碳添加对土壤微生物量碳(ymc)和微生物量氮(MBN)的影响.结果表明,各处理土攘MBC含量变化趋势是前期急剧减少,后期增加,并趋于稳定;黑碳添加在一定程度上缓解了土壤MBN...  相似文献   

11.
黑碳添加对杉木人工林土壤微生物量碳氮的影响   总被引:1,自引:0,他引:1  
向杉木人工林土壤中分别添加不同用量黑碳,以0%(C0)、1%(C1)和5%(C5)添加量(质量分数)作为不同处理,通过28d室内培养实验,研究了黑碳添加对土壤微生物量碳(ymc)和微生物量氮(MBN)的影响.结果表明,各处理土攘MBC含量变化趋势是前期急剧减少,后期增加,并趋于稳定;黑碳添加在一定程度上缓解了土壤MBN含量的减少,并随着黑碳添加量的增加,土壤MBN含量呈现增加的趋势.整个培养过程中,除第1d外,黑碳添加处理的土壤MBC和MBN含量始终高于对照处理,C5〉C1〉CO.同时,土壤可溶性碳(DOC)和可溶性氮(DON)含量也因黑碳的添加而呈现减少的趋势.  相似文献   

12.
在全球气候变化背景下,中国亚热带地区独特的地理位置决定了该地区在气候变暖的同时还会伴随干旱,但对于增温和隔离降雨的研究多集中在中高纬度地区,对亚热带等低纬度地区的研究较少。本研究通过设置对照、增温、隔离降雨和增温+隔离降雨4种处理,探讨增温和隔离降雨对杉木幼林表层土壤养分和微生物生物量的影响。结果表明:增温和隔离降雨均可使土壤养分有效性发生变化,增温使土壤可溶性有机碳、可溶性有机氮、有效磷浓度有所增加,而隔离降雨主要影响了N有效性,表现为土壤铵态氮浓度显著下降(P0.05)。增温后微生物生物量碳、氮均显著下降(P0.05),增温和隔离降雨的交互作用对微生物生物量磷影响显著。在亚热带地区,氮磷养分有效性有可能是全球气候变化背景下影响土壤微生物生物量的重要因素,未来还需结合野外原位实验做进一步的研究。  相似文献   

13.
正到21世纪末全球平均气温将升高1.1~4.6℃[1]。温度升高能够促进植物自身的光合特性以及土壤特性(包括土壤含水量、养分有效性、p H等)发生变化,从而影响植物的生长、生物量的生产及分配、群落结构及生物多样性[2-3]。在过去十几年里,许多生态学者针对植物对气候变化的响应做了大量的相关研究。如徐满厚等[4]研究发现,增温能增加高寒植被的高度以及地上生物量,盖度和地下生物  相似文献   

14.
通过在亚热带杉木林内设置不同隔离降雨强度试验:完全隔离降雨、隔离60%降雨、隔离20%降雨和对照(自然降雨),研究隔离降雨对0~20 cm土层可溶性有机碳(DOC)和微生物生物量碳(MBC)含量的影响,结果表明:0~10 cm和10~20 cm土层,除完全隔离降雨处理土壤DOC峰值出现在春季外,其他处理均出现在秋季。0~10 cm土层中完全隔离降雨和隔离60%降雨处理的土壤MBC峰值出现在春季,而隔离20%降雨和对照的则出现在夏季,10~20 cm土层各处理对应的MBC最大值分别出现在春季、夏季、夏季和秋季。随着土层加深,4种处理土壤DOC、MBC含量均显著降低。0~10 cm土层,完全隔离降雨处理的土壤DOC、隔离60%降雨土壤MBC均与土壤含水量显著正相关,杉木林土壤DOC和MBC对降水变化响应具有明显的季节性。  相似文献   

15.
以中亚热带杉木(Cunninghamia lanceolata)幼苗为研究对象,设置埋设电缆以加热土壤增温(+5℃)的实验,研究了土壤理化性质、土壤有效氮和土壤微生物群落结构等对模拟全球变暖的短期响应。结果表明:1)增温1年后土壤硝态氮含量显著提高1.6倍;p H值、土壤有机碳、总氮和有效磷略有降低,但差异未达显著水平;土壤水分在增温之后明显减少。2)增温导致革兰氏阳性细菌(Gram-positive bacteria,G+)、革兰氏阴性细菌(Gram-positive bacteria,G-)、真菌(Fungi)、放线菌(ACT)和丛枝菌根真菌(AMF)的磷脂脂肪酸(PLFA)生物量均显著减少,G+∶G-在增温之后显著提高,而真菌与细菌比(F∶B)显著降低。3)冗余分析(RDA)显示,温度(T)、土壤含水量(SMC)和硝态氮是决定土壤微生物群落结构变化最重要的环境因子。研究表明,短期增温促进了土壤有机氮矿化,改变了微生物群落结构,细菌中G+相对于G-优势明显。中亚热带杉木人工林土壤有效氮和微生物群落对模拟全球变暖的反应敏感,但长期实验后二者如何变化仍未可知。因此,该区域在未来全球变暖背景下微生物群落和土壤有效养分的响应值得长期而深入的探讨。  相似文献   

16.
细根是植物根系中直径2 mm的部分,对植物群落功能的发挥和土壤碳库及全球碳循环具有重要意义。人工林是森林的重要组成部分,在全球碳循环中扮演着重要的角色,但目前对人工林的研究相对较少。沙枣人工林是西部荒漠地区重要的人工林类型,目前对于其固碳能力的研究尚属空白。利用土柱法和分解袋法,于2010年5~10月整个生长季节内,对三工河流域人工沙枣群落的细根生物量、分解与周转规律进行了研究。结果表明:沙枣群落的细根生物量表现出明显的季节和垂直变化,即在5~8月逐渐增加,8月达到最大值,9~10月逐渐下降。平均月细根生物量为146.24 g/m2,活细根和死细根分别占总细根生物量的73%和27%。在垂直变化上,随土壤深度增加细根生物量逐渐降低,其中,0~10 cm土层细根生物量比例最大,占总生物量的44.63%。沙枣群落的细根年分解率为58.5%。达到半分解和95%分解时,分别需要277d和1093d。沙枣群落的细根净生产力分别为151.99 g·m-2·a-1,细根年周转率分别为1.43次。实验证明,沙枣人工群落地下根系具有较高的生产力,具有良好的固碳能力,是适合在荒漠地区大力推广的人工林树种。  相似文献   

17.
细根在城市绿地地下碳过程中扮演着重要的角色.本研究采用土芯法和WinRHIZO根系分析软件对福建省福州市区内城市绿地的细根现存生物量进行研究。结果表明:1)城市片林的细根生物量在1.15~2.60t/hm^2之间,低于草坪的细根生物量(1.34~4.45t/hm^2),总体上也低于多数亚热带天然森林的细根生物量.2)细...  相似文献   

18.
细根在城市绿地地下碳过程中扮演着重要的角色.本研究采用土芯法和WinRHIZO根系分析软件对福建省福州市区内城市绿地的细根现存生物量进行研究。结果表明:1)城市片林的细根生物量在1.15~2.60t/hm^2之间,低于草坪的细根生物量(1.34~4.45t/hm^2),总体上也低于多数亚热带天然森林的细根生物量.2)细根垂直分布总体规律是随深度的增加而减少,城市草坪上层细根生物量与下层细根生物量差异大于城市片林.城市草坪土壤中79%的细根集中于表层土壤(0—10cm),10~40cm土层中的细根生物量仅占20%,而各城市片林中仅有50%左右的细根集中于土壤表层0~10cm,10~30cm深度的土层中的细根生物量占30%,40~60cm的土层都仍有20%的细根存在.3)采用细根长度、直径建立双因素模型,对城市绿地细根生物量均有较好的拟合结果,但城市片林的模型拟合效果(R^2〉0.85)优于城市草坪(R^2为0.59~0.79).鉴于草坪具有可观的细根生物量,其对城市土壤地下碳过程有着不容忽视的作用,因此今后还需进一步引入其他变量优化其细根拟合模型.  相似文献   

19.
对青藏高原东北缘祁连山西段疏勒河源区多年冻土区0~50 cm土壤微生物生物量碳氮分布特征及其影响因素进行分析。结果表明:稳定型和极不稳定型多年冻土区0~50 cm土壤中微生物量碳含量范围分别为0.015~0.620 g/kg和0.019~0.411 g/kg,微生物量氮含量范围分别为0.644~12.770 mg/kg和0.207~3.725 mg/kg;土壤微生物量总体呈现出稳定型显著高于极不稳定型多年冻土,表明多年冻土退化(多年冻土由稳定型退化为极不稳定型)对土壤微生物量积累有明显抑制作用。土壤微生物生物量碳占有机碳、微生物生物量氮占全氮的比值在稳定型多年冻土中显著高于极不稳定型,表明多年冻土退化对土壤微生物的矿化能力有明显抑制作用。土壤微生物量及其与土壤养分的比值有显著的剖面变化特征,随土壤深度增加而减小。土壤微生物量碳氮均与土壤温度显著负相关,与地下生物量显著正相关。稳定型多年冻土中,土壤微生物量碳氮与碳氮比正相关、与氧化还原电位负相关;不稳定型多年冻土中,土壤微生物量碳氮与pH正相关。土壤微生物量碳氮与土壤温度和pH在剖面变化上显著相关。逐步回归分析表明驱动微生物生物量碳氮在不同多年冻土类型和土层之间变化的因子是不同的。  相似文献   

20.
磷是植物生命活动的必需元素之一,是维持森林生产力的关键养分,但日益增加的氮沉降对土壤磷有效性有何影响?目前尚存争议。选择中亚热带米槠天然林为研究对象,设置对照(CT)、低氮(LN)和高氮(HN)3个处理,观测了连续施氮5.5a后土壤全磷(TP)、土壤有效磷(AP)、微生物量磷(MBP)、微生物量碳(MBC)以及土壤理化性质的变化。结果表明:与对照相比,施氮显著降低了0~10 cm土层有效磷和MBP的含量,且有效磷占全磷比例显著下降,但不同处理下土壤TP无显著差异。施氮处理显著提高了硝态氮(NO_3~--N)和可溶性有机氮(DON)的含量,但土壤有机碳(SOC)和全氮(TN)含量无显著变化。相关分析表明,0~10 cm土层土壤有效磷含量与MBP显著正相关(P0.05),与NO_3~--N含量极显著负相关(P0.01),说明施氮后有效氮和土壤微生物量磷是有效磷变化的重要因素。研究表明:氮沉降主要改变硝态氮、有效磷等有效养分,而对土壤全氮和全磷含量无明显改变,且MBP可能是调节土壤磷有效性的关键因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号