首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mirror-image method is proposed in this paper to solve the boundary conditions in the lattice Boltzmann model proposed by Zhang et al. [Adv. Water Resour. 25 (2002) 1] for the advection and anisotropic dispersion of solute transport in porous media. Three types of boundary are considered: prescribed concentration boundary, prescribed flux boundary and prescribed concentration-gradient boundary. The accuracy of the proposed method is verified against benchmark problems and finite difference method.  相似文献   

2.
《Advances in water resources》2005,28(11):1196-1216
We address a “multi-reflection” approach to model Dirichlet and Neumann time-dependent boundary conditions in lattice Boltzmann methods for arbitrarily shaped surfaces. The multi-reflection condition for an incoming population represents a linear combination of the known population solutions. The closure relations are first established for symmetric and anti-symmetric parts of the equilibrium functions, independently of the nature of the problem. The symmetric part is tuned to build second- and third-order accurate Dirichlet boundary conditions for the scalar function specified by the equilibrium distribution. The focus is on two approaches to advection and anisotropic-dispersion equations (AADE): the equilibrium technique when the coefficients of the expanded equilibrium functions match the coefficients of the transformed dispersion tensor, and the eigenvalue technique when the coefficients of the dispersion tensor are built as linear combinations of the eigenvalue functions associated with the link-type collision operator. As a particular local boundary technique, the “anti-bounce-back” condition is analyzed. The anti-symmetric part of the generic closure relation allows to specify normal flux conditions without inversion of the diffusion tensor. Normal and tangential constraints are derived for bounce-back and specular reflections. The bounce-back closure relation is released from the non-physical tangential flux restriction at leading orders. Solutions for the Poisson equation and for convection–diffusion equations are presented for isotropic/anisotropic configurations with specified Dirichlet and Neumann boundary conditions.  相似文献   

3.
This paper presents a lattice Boltzmann model (LBM) for 2-D advection and anisotropic dispersion equation (AADE) based on the Bhatnagar, Gross and Krook (BGK) model. In the proposed model, the particle speed space is discretized using a rectangular lattice that has four speeds in nine directions, and the single relaxation time is assumed to be directionally dependent. To ensure that the collision is mass-invariant when the relaxation time is directionally dependent, the concentration is calculated from a weighted summation of the particle distribution functions. The proposed model was verified against benchmark problems and the finite difference solution of solute transport with spatially variable dispersion coefficients and non-uniform velocity field. The significant results are that it conserves mass perfectly and offers accurate and efficient solutions for both dispersion-dominated and advection-dominated problems.  相似文献   

4.
5.
In this paper, we focus on a conservative momentum advection discretisation in the presence of z-layers. While in the 2D case conservation of momentum is achieved automatically for an Eulerian advection scheme, special attention is required in the multi-layer case. We show here that an artificial vertical structure of the flow can be introduced solely by the presence of the z-layers, which we refer to as the staircase problem. To avoid this staircase problem, the z-layers have to be remapped in a specific way. The remapping procedure also deals with the case of an uneven number of layers adjacent to a column side, thus allowing one to simulate flooding and drying phenomena in a 3D model.  相似文献   

6.
In this paper, we describe a lattice Boltzmann model to simulate chemical reactions taking place at the interface between two immiscible fluids. The phase-field approach is used to identify the interface and its orientation, the concentration of reactant at the interface is then calculated iteratively to impose the correct reactive flux condition. The main advantages of the model is that interfaces are considered part of the bulk dynamics with the corrective reactive flux introduced as a source/sink term in the collision step, and, as a consequence, the model’s implementation and performance is independent of the interface geometry and orientation. Results obtained with the proposed model are compared to analytical solution for three different benchmark tests (stationary flat boundary, moving flat boundary and dissolving droplet). We find an excellent agreement between analytical and numerical solutions in all cases. Finally, we present a simulation coupling the Shan Chen multiphase model and the interface reactive model to simulate the dissolution of a collection of immiscible droplets with different sizes rising by buoyancy in a stagnant fluid.  相似文献   

7.
In this paper, the numerical errors associated with the finite difference solutions of two-dimensional advection–dispersion equation with linear sorption are obtained from a Taylor analysis and are removed from numerical solution. The error expressions are based on a general form of the corresponding difference equation. The variation of these numerical truncation errors is presented as a function of Peclet and Courant numbers in X and Y direction, a Sink/Source dimensionless number and new form of Peclet and Courant numbers in X–Y plane. It is shown that the Crank–Nicolson method is the most accurate scheme based on the truncation error analysis. The effects of these truncation errors on the numerical solution of a two-dimensional advection–dispersion equation with a first-order reaction or degradation are demonstrated by comparison with an analytical solution for predicting contaminant plume distribution in uniform flow field. Considering computational efficiency, an alternating direction implicit method is used for the numerical solution of governing equation. The results show that removing these errors improves numerical result and reduces differences between numerical and analytical solution.  相似文献   

8.
9.
Summary A linear 1-D advection equation is used to study the utilization of a finite-element method and open lateral boundary conditions. Two possible implementations of a radiation (Sommerfeld) boundary condition are tested for the case of a solitary wave passing through a computational domain — the case corresponding to zero lateral boundary values — and for the case of a simple sinusoidal wave which corresponds to a non-zero boundary forcing.  相似文献   

10.
A lattice Boltzmann (LB) model is proposed for simulating fluid flow in porous media by allowing the aggregates of finer-scale pores and solids to be treated as ‘equivalent media’. This model employs a partially bouncing-back scheme to mimic the resistance of each aggregate, represented as a gray node in the model, to the fluid flow. Like several other lattice Boltzmann models that take the same approach, which are collectively referred to as gray lattice Boltzmann (GLB) models in this paper, it introduces an extra model parameter, ns, which represents a volume fraction of fluid particles to be bounced back by the solid phase rather than the volume fraction of the solid phase at each gray node. The proposed model is shown to conserve the mass even for heterogeneous media, while this model and that model of Walsh et al. (2009) [1], referred to the WBS model thereafter, are shown analytically to recover Darcy–Brinkman’s equations for homogenous and isotropic porous media where the effective viscosity and the permeability are related to ns and the relaxation parameter of LB model. The key differences between these two models along with others are analyzed while their implications are highlighted. An attempt is made to rectify the misconception about the model parameter ns being the volume fraction of the solid phase. Both models are then numerically verified against the analytical solutions for a set of homogenous porous models and compared each other for another two sets of heterogeneous porous models of practical importance. It is shown that the proposed model allows true no-slip boundary conditions to be incorporated with a significant effect on reducing errors that would otherwise heavily skew flow fields near solid walls. The proposed model is shown to be numerically more stable than the WBS model at solid walls and interfaces between two porous media. The causes to the instability in the latter case are examined. The link between these two GLB models and a generalized Navier–Stokes model [2] for heterogeneous but isotropic porous media are explored qualitatively. A procedure for estimating model parameter ns is proposed.  相似文献   

11.
We report a two-dimensional multi-block lattice Boltzmann model for solute transport in shallow water flows, which is developed based on the advection–diffusion equation for mass transport and the shallow water equations for the flows. A weighting factor is included in the centered scheme for improved accuracy. The model is firstly verified by simulating three benchmark tests: wind-driven circulation in a dish-shaped lake, jet-forced flow in a circular basin, and flow formed by two parallel streams containing different uniform concentrations at the same constant velocity; and then it is applied to a practical wind-induced flow, Baiyangdian Lake, which is characterized by irregular geometries and complex bathymetries. The numerical results have shown that the model is able to produce accurate and detailed results for both water flows and solute transport, which is attractive, especially for flows in narrow zones of practical terrains and certain areas with largely varying pollutant concentrations.  相似文献   

12.
In this paper, a novel coupled pore-scale model of pore-fluid interacting with discrete particles is presented for modeling liquefaction of saturated granular soil. A microscale idealization of the solid phase is achieved using the discrete element method (DEM) while the fluid phase is modeled at a pore-scale using the lattice Boltzmann method (LBM). The fluid forces applied on the particles are calculated based on the momentum exchange between the fluid and particles. The presented model is based on a first principles formulation in which pore-pressure develops due to actual changes in pore space as particles׳ rearrangement occurs during shaking. The proposed approach is used to model the response of a saturated soil deposit subjected to low and large amplitude seismic excitations. Results of conducted simulations show that at low amplitude shaking, the input motion propagates following the theory of wave propagation in elastic solids. The deposit response to the strong input motion indicates that liquefaction took place and it was due to reduction in void space during shaking that led to buildup in pore-fluid pressure. Soil liquefaction was associated with soil stiffness degradation and significant loss of interparticle contacts. Simulation results also indicate that the level of shaking-induced shear strains and associated volumetric strains play a major role in the onset of liquefaction and the rate of pore-pressure buildup.  相似文献   

13.
This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (LTRT) to solve saltwater intrusion problems. A directional-speed-of-sound (DSS) technique is introduced to take into account the hydraulic conductivity heterogeneity and discontinuity, as well as the velocity-dependent dispersion coefficient. The forcing terms in the LTRT model are customized in order to recover the density-dependent groundwater flow and mass transport equations. Using the LTRT with the squared DSS achieves at least second-order accuracy. The LTRT results are verified with Henry’s analytical solution as well as compared with several numerical examples and modified Henry problems that consider heterogeneous hydraulic conductivity and velocity-dependent dispersion. The numerical results show good agreement with the Henry analytical solution and with the numerical solutions obtained by other numerical methods.  相似文献   

14.
A multilayer lattice Boltzmann (LB) model is introduced to solve three-dimensional wind-driven shallow water flow problems. The multilayer LB model avoids the expensive Navier–Stokes equations and obtains stratified horizontal flow velocities as vertical velocities are relatively small and the flow is still within the shallow water regime. A single relaxation time BGK method is used to solve each layer coupled by the vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to obtain flow velocities. The main advantage of using the LBM is that after selecting appropriate equilibrium distribution functions, the LB algorithm is only slightly modified for each layer and retains all the simplicities of the LBM within the high performance computing (HPC) environment. The performance of the parallel LB model for the multilayer shallow water equations is investigated on CPU-based HPC environments using OpenMP. We found that the explicit loop control with cache optimization in LBM gives better performance on execution time, speedup and efficiency than the implicit loop control as the number of processors increases. Numerical examples are presented to verify the multilayer LB model against analytical solutions. We demonstrate the model’s capability of calculating lateral and vertical distributions of velocities for wind-driven circulation over non-uniform bathymetry.  相似文献   

15.
Difficulty in solving the transient advection–diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space–time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection–diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian–Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.  相似文献   

16.
This present paper proposes a two-dimensional lattice Boltzmann model coupled with a Large Eddy Simulation (LES) model and applies it to flows around a non-submerged groyne in a channel. The LES of shallow water equations is efficiently performed using the Lattice Boltzmann Method (LBM) and the turbulence can be taken into account in conjunction with the Smagorinsky Sub-Grid Stress (SGS) model. The bounce-back scheme of the non-equilibrium part of the distribution function is used to determine the unknown distribution functions at inflow boundary, the zero gradient of the distribution function is set normal to outflow boundary to obtain the unknown distribution functions here and the bounce-back scheme, which states that an incoming particle towards the boundary is bounced back into fluid, is applied to the solid wall to ensure non-slip boundary conditions. The initial flow field is defined firstly and then is used to calculate the local equilibrium distributions as initial conditions of the distribution functions. These coupled models successfully predict the flow characteristics, such as circulating flow, velocity and water depth distributions. The comparisons between the simulated results and the experimental data show that the model scheme has the capacity to solve the complex flows in shallow water with reasonable accuracy and reliability.  相似文献   

17.
As is frequently cited, dispersivity increases with solute travel distance in the subsurface. This behaviour has been attributed to the inherent spatial variation of the pore water velocity in geological porous media. Analytically solving the advection–dispersion equation with distance-dependent dispersivity is extremely difficult because the governing equation coefficients are dependent upon the distance variable. This study presents an analytical technique to solve a two-dimensional (2D) advection–dispersion equation with linear distance-dependent longitudinal and transverse dispersivities for describing solute transport in a uniform flow field. The analytical approach is developed by applying the extended power series method coupled with the Laplace and finite Fourier cosine transforms. The developed solution is then compared to the corresponding numerical solution to assess its accuracy and robustness. The results demonstrate that the breakthrough curves at different spatial locations obtained from the power series solution show good agreement with those obtained from the numerical solution. However, owing to the limited numerical operation for large values of the power series functions, the developed analytical solution can only be numerically evaluated when the values of longitudinal dispersivity/distance ratio eL exceed 0·075. Moreover, breakthrough curves obtained from the distance-dependent solution are compared with those from the constant dispersivity solution to investigate the relationship between the transport parameters. Our numerical experiments demonstrate that a previously derived relationship is invalid for large eL values. The analytical power series solution derived in this study is efficient and can be a useful tool for future studies in the field of 2D and distance-dependent dispersive transport. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of the production and loss mechanisms that affect the Boltzmann equations are considered by the inclusion of a reactive term. The necessary elements to develop a proper form for this term are revised and the curent trends analyzed. Although no accurate theoretical treatment of the problem is possible due to the many body nature of it, important relations can be derived which, besides being representative of the quantitative aspects of the matter, are illustrative of the qualitative features of the phenomenon. The overall procedure is detailed in this revision.  相似文献   

19.
用格子玻尔兹曼方法模拟非均匀介质中的电场响应   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了用格子玻尔兹曼方法模拟非均匀介质中的电场响应的数值模拟方法. 格子玻尔兹曼方法是从微观领域出发进行数值计算的一种全新的正演模拟方法;从玻尔兹曼碰撞模型出发,利用泰勒展开和Chapman Enskog展开,在基本力学守恒条件和约束条件的限制下,导出了电场响应的扩散方程,得到了局部平衡分布函数的表达式,给出了若干正演模拟的结果;其结果表明,利用这种方法进行非均匀介质中的电场响应正演模拟具有灵活、方便和简单等优点.  相似文献   

20.
A numerical method based on the modified method of characteristics is developed for incompressible Darcy flow. Fluid elements modeled as grid cells are mapped back in time to their twisted forms and a strict equality of volumes is imposed between the two. These relations are then cast in terms of potentials using Darcy's law and a nonlinear algebraic problem is solved for potentials. Though a general technique for obtaining Darcy flow, this method is most useful when the solute advection problem also is solved with the modified method of characteristics. The combined technique (referred to as the characteristic-conservative method) using the same characteristics to obtain both velocities and concentrations is then a direct numerical approximation to the Reynolds transport theorem. The method is implemented in three dimensions and a few sample problems featuring nonuniform flow-fields are solved to demonstrate the exact mass conservation property. Inflow and outflow boundaries do not cause any problems in the implementation. In all cases, the characteristic-conservative method obtains velocities that preserve fluid volume and, concentrations that achieve exact local and global mass balance; a desirable property that usually eludes characteristics based methods for solute advection in multidimensional, nonuniform flow-fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号