首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A detailed model was formulated to describe the non-passive transport of water-soluble chemicals in the unsaturated zone and used to illustrate one-dimensional infiltration and redistribution of alcohol–water mixtures. The model includes the dependence of density, viscosity, surface tension, molecular diffusion coefficient in the liquid-phase, and gas–liquid partition coefficient on the aqueous mixture composition. It also takes into account the decrease in the gas–liquid partition coefficient at high capillary pressures, in accordance with Kelvin’s equation for multi-component mixtures. Simulation of butanol–water mixtures infiltration in sand was in agreement with the experimental data and simulations reported in the literature. Simulation of methanol infiltration and redistribution in two different soils showed that methanol concentration significantly affects volumetric liquid content and concentration profiles, as well as the normalized volatilization and evaporation fluxes. Dispersion in the liquid-phase was the predominant mechanism in the transport of methanol when dispersivity at saturation was set to 7.8 cm. Liquid flow was mainly due to capillary pressure gradients induced by changes in volumetric liquid content. However, for dispersivity at saturation set to 0.2 cm, changes in surface tension due to variation in composition induced important liquid flow and convection in the liquid-phase was the most active transport mechanism. When the Kelvin effect was ignored within the soil, the gas-phase diffusion was significantly lower, leading to lower evaporation flux of water and higher volumetric liquid contents near the soil surface.  相似文献   

2.
Accurate prediction of water and air Iran sport parameters in variably saturated soil is necessary for modeling of soil-vapor extraction (SVE) at soil sites contaminated with volatile organic chemicals (VOCs). An expression for predicting saturated water permeability (kl,s) in undisturbed soils from the soil total porosity and the field capacity soil-water content was developed by fitting a tortuous-tube fluid flow model to measured water permeability and gas diffusivity data. The new kl,s expression gave accurate predictions when tested against independent kl,s data. The kl,s expression was implemented in the Campbell relative water permeability model to yield a predictive model for water permeability in variably saturated, undisturbed soil. The water permeability model, together with recently developed predictive equations for gas permeability and gas diffusivity, was used in a two-dimensional numerical SVE model that also included non-equilibrium mass transfer of VOC from a separate phase (nonaqueous phase liquid [NAPL]) to the air phase. SVE: calculations showed that gas permeability is likely the most important factor controlling VOC migration and vapor extraction efficiency. Water permeability and gas diffusivity effects became significant at water contents near and above field capacity. The NAPL-air mass transfer coefficient also had large impacts on simulated vapor extraction efficiency. The calculations suggest that realistic SVE models need to include predictive expressions for both conveciive, diffusive. and phase-partitioning processes in natural, undisturbed soils.  相似文献   

3.
Site closure for soil vacuum extraction (SVE) application typically requires attainment or specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLs). Unfortunately, realization of MCLs in ground water may not be attainable at many sites. This results in soil remediation efforts that may be in excess of what is necessary for future protection of ground water and soil remediation goals which often cannot be achieved within a reasonable time period. Soil venting practitioners have attempted to circumvent these problems by basing closure on some predefined percent total mass removal, or an approach to a vapor concentration asymptote. These approaches, however, are subjective and influenced by venting design. We propose an alternative strategy based on evaluation of five components: (1) site characterization, (2) design. (3) performance monitoring, (4) rule-limited vapor transport, and (5) mass flux to and from ground water. Demonstration of closure is dependent on satisfactory assessment of all five components. The focus of this paper is to support mass flux evaluation. We present a plan based on monitoring of three subsurface zones and develop an analytical one-dimensional vertical flux model we term VFLUX. VFLUX is a significant improvement over the well-known numerical one-dimensional model. VLEACH, which is often used for estimation of mass flux to ground water, because it allows for the presence of nonaqueous phase liquids (NAPLs) in soil, degradation, and a lime-dependent boundary condition at the water table inter-face. The time-dependent boundary condition is the center-piece of our mass flux approach because it dynamically links performance of ground water remediation lo SVE closure. Progress or lack of progress in ground water remediation results in either increasingly or decreasingly stringent closure requirements, respectively.  相似文献   

4.
5.
This paper develops mass fraction models for transport and fate of agricultural pollutants in structured two-region soils. Mass fraction index models, based on a semi-infinite domain solution, are derived that describe leaching at depth, vapor losses through soil surface, absorption, and degradation in the dynamic- and stagnant-water soil regions. The models predict that leaching is the result of the combined effect of the upward vapor-phase transport relative to downward advection, residence time relative to half-life, dispersion, and lateral diffusive mass transfer. Simulations show that leached fraction of volatile compounds does not always decrease monotonically with increased residence time relative to the pollutant half-life, as a result of complex interactions among the different physical and biochemical processes. The results show that leaching, volatilization, and degradation losses can be affected significantly by lateral diffusive mass transfer into immobile-water regions and advection relative to dispersion (i.e. Peclet number) in the mobile-water regions. It is shown that solute diffusion into the immobile phase and subsequent biochemical decay reduces leaching and vapor losses through soil surface. Potential use of the modified leaching index for the screening of selected pesticides is illustrated for different soil textures and infiltration rates. The analysis may be useful to the management of pesticides and the design of landfills.  相似文献   

6.
Dry saline soils are common in the arid and hyper‐arid basins located in the Chilean Altiplano, where evaporation from shallow groundwater is typically the major component of the water balance. Thus, a good understanding of evaporation processes is necessary for improving water resource planning and management in these regions. In this study, we conducted laboratory experiments with a natural saline soil column to estimate evaporation rates and assess the liquid and water vapor fluxes under different water table levels. Water content, electrical conductivity and temperature at different depths were utilized to assess the liquid and water vapor fluxes in the soil column. We observed movement of water that dissolves salts from the soil and transports them to areas in the column where they accumulate. Isothermal liquid flux was predominant, while thermal and isothermal liquid and thermal water vapor fluxes were negligible, except for deep water table levels where isothermal and thermal water vapor fluxes had similar magnitude but opposite directions. Differences observed in total fluxes for all water table levels were due to different upward and downward fluxes, which depend on changes in water content and temperature within the soil profile. Both the vapor flux magnitude and direction were found to be very sensitive to the choice of empirical parameters used in flux quantification, such as tortuosity and the enhancement factor for local temperature gradients in the air phase within the column. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Transport and Biological Fate of Toluene in Low-Permeability Soils   总被引:1,自引:0,他引:1  
The effect of simultaneous sorption, diffusion, and biodegradation on the fate and transport of toluene in low-permeability soil formations was examined. A transport model accounting for vapor and liquid sorption, vapor diffusions, and first-order biodegradation was developed to describe the movement of volatile solute in unsaturated soils. Modeling studies were followed with laboratory batch and column studies on fine-grained soil samples obtained from a gasoline-contaminated site. Batch experiments yielded the sorption and diffusion coefficients for generating theoretical solute transport profiles. Column studies were conducted to examine toluene sorption, diffusion, and biodegradation under aerobic and denitrifying conditions. Results from the column studies indicated that vapor sorption onto the soil was minimal due to the high moisture content of the soil. Comparison of model predictions with experimental results indicated that the SASK model, which is based on the resistivity theory, provided a more accurate prediction of the vapor phase tortuosity than the frequently used Millington-Quirk equation. Laboratory results of toluene concentration profiles matched well with the model predictions and yielded degradation rates comparable to those obtained in the field. Column studies, examining toluene biodegradation under aerobic and denitrifying conditions in low-permeability soils, indicated that the presence of excess nitrate in aerobic environments yielded higher solute degradation rates than those observed under exclusively aerobic systems.  相似文献   

8.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

9.
A system of equations for the calculation of thermal convection in a compressible mantle with variable parameters and phase transitions is derived from the general laws of mass, momentum, and energy conservation and thermodynamic relations. Mantle convection is successively calculated in the anelastic liquid, truncated anelastic liquid, mean density, expanded Boussinesq, and Boussinesq approximations. Phase transitions are automatically taken into account with the help of effective thermodynamic parameters determined from general thermodynamic relations.  相似文献   

10.
The generation of vapor‐phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non‐aqueous‐phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two‐dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water‐wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water‐saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective‐dispersive‐diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.  相似文献   

11.
A numerical model of atmospheric convection is used to investigate the effects of the birth, growth, and death of a cumulus cloud on the temporal and spatial characteristics of atmospheric energy content. Energy in the forms of latent and thermal enthalpy of water vapor, thermal enthalpy of dry air and of condensed liquid, and potential and kinetic energy is computed. Changes in the energy content and the vertical flux of energy are mapped in the vertical plane passing through the cloud axis and are summed horizontally and vertically over the domain to show the rearrangements.It is found that the relative importance of different forms of energy is a function of position with respect to the cloud. Energy related to the presence of water vapor accounts for most of the changes in the vicinity of the cloud. Convection tends to decrease the potential instability of the atmosphere, the amount of decrease being determined by the total energy released during condensation regardless of whether it falls as rain. The time for the departure from neutral stability to be reduced by 10 percent of its initial value is estimated to be about one hour.  相似文献   

12.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

13.
14.
Soil-gas surveys are becoming more widely accepted as a tool for the preliminary determination of the extent of soil and ground water contamination by volatile organic compounds (VOCs). The interpretation of the results of published soil-gas surveys has been necessarily limited and qualitative due to a lack of adequate models. There has been considerable effort in the recent past to characterize the transport and fate of pesticides in soil. However, the behavior of pesticides generally differ substantially from those of VOCs.
This paper presents a computer model developed to simulate the diffusive transport of VOC vapor through unsaturated soils using a two-dimensional, finite-difference, solution to Fick's second law of diffusion. An effective diffusion coefficient that incorporates the effects of tortuosity, moisture content, and soil organic carbon content is computed. Although the model has not been validated due to the unavailability of adequate field or laboratory data, nevertheless, sensitivity analyses demonstrate the importance of soil moisture and, secondarily, organic matter content in controlling the migration of VOC vapor through the unsaturated zone. The interpretation of soil-gas surveys can be complicated by unknown spatial heterogeneities in soil moisture and organic carbon content, temporal variations in moisture content, extent of contaminant migration as a non-aqueous phase liquid and by the unknown extent of VOC liquid and contaminated ground water.  相似文献   

15.
Measurement of the vapor flux from volatile organic compounds (VOCs) provides a rapid means for screening large areas of potential contamination. The vapor flux is determined from the rate of VOC concentration buildup inside a 3.1L accumulator device that is sealed to the surface of the contaminated soil. After the VOC concentrations are allowed to increase for a few minutes, they are analyzed with a portable gas chromatograph or a total organic vapor analyzer.
The measurement approach was evaluated at a field site in an area where the ground water and soil had been impacted with Jet Fuel No. 4 (JP-4). An indication of the areal extent of impact was determined by mapping the surface VOC vapor flux. The pattern revealed by the flux measurements was found to coincide, in rough outline, with the known extent of toluene concentrations in the ground water and with conventional soil-gas survey results. In addition, a mathematical model describing VOC diffusion into the accumulator device was verified by performing laboratory measurements of the surface VOC vapor flux on a sandbox designed to simulate a hazardous waste site.  相似文献   

16.
A fully coupled thermal–hydraulic–mechanical–chemical (THMC) model was proposed to describe the migration of volatile organic contaminations (VOCs) in unsaturated landfill liners. The vertical soil stress, capillary pressure, air pressure, temperature increase, and solute concentration were selected as the primary variables. Finite deformations were described using Lagrangian coordinates. Non-isothermal moisture transport was found to be dependent on both the temperature gradient and the concentration of the VOCs. The VOCs were assumed to exist and be transported in three phases in the soil: solid, liquid, and gas. An illustrative example of an unsaturated landfill with a compacted clay liner was presented. For the case considered, the transport of gas phase VOCs was found to dominate the migration progress. Moreover, the temperature gradient can accelerate the breakthrough of VOCs in an unsaturated liner, while the mechanical consolidation slowed down the motion of the VOCs.  相似文献   

17.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

18.
A numerical algorithm for predicting the migration of multiple subsurface pollutants has been developed accounting for dispersion, convection, soluble complexation and solid phase accumulations (sorption). The basis of the model is a finite element solution of the mass transport equation. The essence of the algorithm is the treatment of the sorption terms as implicit functions of the total soluble concentrations facilitating a general and modularized treatment of solution phase and solid phase chemistry. Examples are presented illustrating the effects of soluble complexation and competitive sorption on the transport of multicomponent solutions.  相似文献   

19.
基于2005年NCEP/GFS分析资料和拉格朗日粒子扩散模式的“Domain Filling”技术,以气块穿越对流层顶后的滞留时间为标准,诊断分析了夏季亚洲季风区对流层-平流层质量交换,重点讨论了对平流层大气成分收支具有实际意义的不可逆双向质量交换过程,并利用前向(后向)轨迹追踪方法,分析了其4天的“源(汇)”特征.研究结果表明:(1)对流层-平流层质量交换(Troposphere-Stratosphere mass Exchange,STE)的计算对滞留时间阈值的选择具有较强敏感性,大多数的气块在1~2天内可频繁地往返对流层顶.这些瞬时交换事件的考虑与否对穿越对流层顶的质量交换计算的准确性具有重要影响,尤其在中纬度的风暴轴区域.(2)从亚洲季风区对流层-平流层质量净交换纬向平均上看,45°N以南的区域为对流层向平流层的质量输送(Troposphere to Stratosphere mass Transport,TST),副热带地区为最强的上升支,而在45°N~55°N的中纬度地区是平流层向对流层质量输送(Stratosphere to Troposphere mass Transport,STT).地理分布上,STT主要分布在青藏高原以北的东亚地区,与亚洲季风区夏季大尺度的槽区相对应.夏季整个亚洲季风区都是TST发生的区域,最大值位于青藏高原东南侧及其附近区域,该区域占亚洲季风区不可逆TST夏季平均总量的46%.(3)对流层-平流层质量交换的“源汇”特征分析表明,STT主要源于100°E以西、50°N以北的高纬地区,向下可以输送到中国东北部及朝鲜半岛北部等中纬度区域.而TST主要来源于中纬度和副热带地区的大气输送,向上穿越对流层顶高度以后,可分别向高纬的极地和热带地区输送,这意味着亚洲季风区夏季的TST水汽输送可能进入“热带管”中,进而可能对全球平流层水汽平衡产生重要影响.  相似文献   

20.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号