首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-distributed watershed model was developed that conceptualizes the catchment as a cascade of nonlinear storage elements whose geometric dimensions are derived from the Horton–Strahler ordering of the stream network. Each storage element represents quick storm runoff over land or in a channel segment. The physically based groundwater submodel is parameterized through the application of the Brutsaert–Nieber recession flow analysis and it provides continuous baseflow separation. The model requires the calibration of seven parameters from a one year rainfall–runoff record. It was tested on the Mahantango Creek watershed in the Susquehanna River basin, Pennsylvania.  相似文献   

2.
Interpretation of spring recession curves   总被引:4,自引:0,他引:4  
Recession curves contain information on storage properties and different types of media such as porous, fractured, cracked lithologies and karst. Recession curve analysis provides a function that quantitatively describes the temporal discharge decay and expresses the drained volume between specific time limits (Hall 1968). This analysis also allows estimating the hydrological significance of the discharge function parameters and the hydrological properties of the aquifer. In this study, we analyze data from perennial springs in the Judean Mountains and from others in the Galilee Mountains, northern Israel. All the springs drain perched carbonate aquifers. Eight of the studied springs discharge from a karst dolomite sequence, whereas one flows out from a fractured, slumped block of chalk. We show that all the recession curves can be well fitted by a function that consists of two exponential terms with exponential coefficients alpha1 and alpha2. These coefficients are approximately constant for each spring, reflecting the hydraulic conductivity of different media through which the ground water flows to the spring. The highest coefficient represents the fast flow, probably through cracks, or quickflow, whereas the lower one reflects the slow flow through the porous medium, or baseflow. The comparison of recession curves from different springs and different years leads to the conclusion that the main factors that affect the recession curve exponential coefficients are the aquifer lithology and the geometry of the water conduits therein. In normal years of rainy winter and dry summer, alpha1 is constant in time. However, when the dry period is longer than usual because of a dry winter, alpha1 slightly decreases with time.  相似文献   

3.
To study the base flow recession at the watershed scale, the log-scale plot of − dQ/dt ∼ Q proposed by Brutsaert and Nieber [10] has been used to estimate the recession parameters, i.e., the slope and interception of the theoretical recession slope curve. The lower envelope or the best fit in some studies is usually used to determine the recession slope curve for natural watersheds. However, human interferences exist in most watersheds around the world. This paper discusses the impact of human interferences, which include groundwater pumping, water diversion and return flow, on the determination of the recession slope curve and the cloud shape of the data points of − dQ/dt ∼ Q. First, values of − dQ/dt generated for hypothetical watersheds are analyzed. Then real data for three watersheds in Illinois is analyzed to verify the hypothetical analysis. The placement of the recession slope curve depends on the coexistence and relative amount of the evapotranspiration, groundwater pumping or even water diversion if it exists, and the return flow. When the water consumption rate is small, the recession slope curve can even be located at the upper envelope of the cloud of points representing historical data. These results suggest that the use of the lower envelope as a guideline for estimating recession parameters for watersheds subject to human interferences can result in biased estimates.  相似文献   

4.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We explore seasonal variability and spatiotemporal patterns in characteristic drainage timescale (K) estimated from river discharge records across the Kilombero Valley in central Tanzania. K values were determined using streamflow recession analysis with a Brutsaert–Nieber solution to the linearized Boussinesq equation. Estimated K values were variable, comparing between wet and dry seasons for the relatively small catchments draining upland positions. For the larger catchments draining through valley bottoms, K values were typically longer and more consistent across seasons. Variations in K were compared with long‐term averaged, Moderate‐resolution Imaging Spectroradiometer‐derived monthly evapotranspiration. Although the variations in K were potentially related to evapotranspiration, the influence of data quality and analysis procedure could not be discounted. As such, even though recession analysis offers a potential approach to explore aquifer release timescales and thereby gain insight to a region's hydrology to inform water resources management, care must be taken when interpreting spatiotemporal shifts in K in connection with process representation in regions like the Kilombero Valley. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

6.
Heejun Chang 《水文研究》2007,21(2):211-222
This study investigates changes in streamflow characteristics for urbanizing watersheds in the Portland Metropolitan Area of Oregon for the period from 1951 to 2000. The objective of this study was to assess how mean annual runoff ratio, mean seasonal runoff ratio, annual peak runoff ratio, changes in streamflow in response to storm amount, the fraction of time that the daily mean flow exceeds the annual mean flow, 3‐day recession constants, and dry/wet flow ratio vary among watersheds with different degrees of urban development. There were no statistically significant changes in annual runoff ratio and annual peak runoff ratio for the mixed land‐use watershed (Tualatin River watershed) and the urban watershed (Johnson Creek watershed) during the entire study period. The Tualatin River watershed, where most of the urban development occurred in a lower part of the watershed, showed a statistically significant increase in annual peak runoff ratio during the 1976 and 2000 period. The Upper Tualatin River watershed illustrated a significant decrease in annual peak runoff ratio for the entire study period. With significant differences in seasonal runoff ratio, only Johnson Creek exhibited a significant increase in both wet and dry season runoff ratios. Streamflow during storm events declined rapidly in the urban watershed, with a high 3‐day recession constant. At an event storm scale, streamflow in Fanno Creek, which is the most urbanized watershed, responded quickly to precipitation input. The fraction of time that the daily mean flow exceeded the annual mean flow and dry/wet flow ratio are all lower in Johnson Creek. This suggests a shorter duration of storm runoff and lower baseflow in the urbanized watershed when compared to the mixed land use watershed. The findings of this study demonstrate the importance of spatial and temporal scale, climate variability, and basin physiographic characteristics in detecting the hydrologic effects of urbanization in the Pacific Northwest of the USA. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrogeologic field work in remote settings is often challenging: assessing spring behaviour and aquifer characteristics can be expensive in both time commitment and resources needed to assess these systems. In this study, we document the hydrology and geochemistry of 47 perennial karst springs in the Kaweah River, a mountain river basin in the Sierra Nevada, California. After preliminary hydrogeochemical characterization and grouping, selected springs were continuously monitored to further assess aquifer characteristics in each group. Later, in areas without previous dye‐tracing work, traces were conducted to establish connections between large sinking streams and springs. The springs have a wide range of inter‐spring and intra‐spring variability in discharge and geochemistry. We assessed this variability by performing statistical comparisons with spring chemistry and principal components analysis of all measured variables. Results show that springs can be divided into two distinct groups: high elevation springs of the Mineral King Valley and lower elevation springs throughout the rest of the basin. Continuous discharge, temperature and specific conductivity data from four springs (two from each group) were then used to characterize the hydrograph recession behaviour of springs in each group. Both groups showed statistically similar baseflow recession slopes, suggesting that both groups contain baseflow storage compartments with similar hydrogeologic properties. The biggest difference between each group is the variability in amount of water remaining in the aquifer during baseflow conditions. High elevation springs have lower baseflow discharges, relative to peak flow, than lower elevation springs, despite the fact that more precipitation falls at higher elevation. This is likely caused by differences in the amount of soil and epikarst storage, which are related to recent geomorphic events: high elevation aquifers were glaciated as recent as 41 thousand years ago (kya), while there is no evidence that low elevation aquifers were glaciated. As a result, lower elevations have developed thicker soils, weathered bedrock and epikarst. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The average flow of Silver Springs, one of the largest magnitude springs in Central Florida, declined 32% from 2000 to 2012. The average groundwater head in the springshed declined 0.14 m, and the spring pool altitude increased 0.24 m during the same period. This paper presents a novel explanation of the spring flow recession curve for Silver Springs using the Torricelli model, which uses the groundwater head at a sentinel well, the spring pool altitude and the net recharge to groundwater. The effective springshed area and net recharge (defined as recharge minus groundwater pumping and evapotranspiration) were estimated based on the observed recession slopes for spring flow, groundwater head and spring pool altitude. The results indicate that the effective springshed area continuously declined since 1989 and the net recharge declined since the 1970s with a significant drop in 2002. Subsequent to 2002, the net recharge increased modestly but not to the levels prior to the 1990s. The reduction in net recharge was caused by changes in hydroclimatic conditions including precipitation and air temperature, along with groundwater withdrawals, which contributed to the declined spring flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Stream‐flow recessions are commonly characterized by the exponential equation or in the alternative power form equation of a single linear reservoir. The most common measure of recession is the recession constant K, which relates to the power function form of the recession equation for a linear reservoir. However, in reality it can be seen that the groundwater dynamics of even the simplest of aquifers may behave in a non‐linear fashion. In this study three different storage–outflow algorithms; single linear, non‐linear and multiple linear reservoir were considered to model the stream‐flow recession of the upper Blue Nile. The recession parameters for the linear and non‐linear models were derived by the use of least‐squares regression procedures. Whereas, for the multiple linear reservoir model, a second‐order autoregressive AR (2) model was applied first in order to determine the parameters by the least‐squares method. The modelling of the upper Blue Nile recession flow performed shortly after the wet season, when interflow and bank storage may be contributing considerably to the river flow, showed that the non‐linear reservoir model simulates well with the observed counterparts. The variation related to preceding flow on a recession parameter of the non‐linear reservoir remains significant, which was obtained by stratification of the recession curves. Although a similar stratification did not show any systematic variation on the recession parameters for the linear and multiple linear reservoir models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In headwater catchments, streamflow recedes between periods of rainfall at a predictable rate generally defined by a power–law relationship relating streamflow decay to streamflow. Research over the last four decades has applied this relationship to predictions of water resource availability as well as estimations of basin‐wide physiographic characteristics and ecohydrologic conditions. However, the interaction of biophysical processes giving rise to the form of these power–law relationships remains poorly understood, and recent investigations into the variability of streamflow recession characteristics between discrete events have alternatively suggested evapotranspiration, water table elevation, and stream network contraction as dominant factors, without consensus. To assess potential temporal variability and interactions in the mechanism(s) driving streamflow recession, we combine long‐term observational data from a headwater stream in the southern Appalachian Mountains with state and flux conditions from a process‐based ecohydrologic model. Streamflow recession characteristics are nonunique and vary systematically with seasonal fluctuations in both rates of transpiration and watershed wetness conditions, such that transpiration dominates recession signals in the early growing season and diminishes in effect as the water table elevation progressively drops below and decouples with the root zone with topographic position. As a result of this decoupling, there exists a seasonal hysteretic relationship between streamflow decay and both evapotranspiration and watershed wetness conditions. Results indicate that for portions of the year, forest transpiration may actively compete with subsurface drainage for the same water resource that supplies streamflow, though for extended time periods, these processes exploit distinct water stores. Our analysis raises concerns about the efficacy of assessing humid headwater systems using traditional recession analysis, with recession curve parameters treated as static features of the watershed, and we provide novel alternatives for evaluating interacting biological and geophysical drivers of streamflow recession.  相似文献   

11.
The estimation of catchment‐scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally performed on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep‐weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here, we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison between cumulated streamflow and precipitation to assess catchment‐scale storage capacities. DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber in 1977 to estimate water storage capacities and lateral saturated hydraulic conductivities of the nondocumented deep horizons. The analysis is applied to a sample of 23 catchments (0.2–291 km2) located in the Cévennes‐Vivarais region (south of France). For regionalization purposes, the obtained results are compared with the dominant catchment geology and present a clear hierarchy between the different geologies of the area. Hard crystalline rocks are found to be associated with the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be less thick and most conductive. These results are of primary interest in view of the future set‐up of distributed hydrological models over the Cévennes‐Vivarais region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Reservoir storage plays an important role in water supply during the dry season when precipitation is insufficient. In a watershed where the streams are controlled by reservoirs, drought occurrences depend on not only precipitation variations but also reservoir regulation. In this study, the joint dependence structure of the reservoir storage and its relevant variables of precipitation and/or upstream outflow were analyzed for two cascade reservoirs in a headwater basin of the Huaihe River, China. Correlation analysis indicates that the reservoir storage in October (the end of the wet season) depends highly on the regional precipitation at time scales of several months, e.g., 7 months for the upstream and 9 months for the downstream. Additionally, the downstream storage is correlated with outflow from the upstream reservoir at the 5-month timescale significantly. For estimation of the joint probability of pairs of the storage and its relevant variables, univariate marginal distributions and bivariate copula were appropriately selected in terms of statistical tests. The bivariate return period of \(T(X < x,Y < y)\) and \(T(X \le x,Y \ge y)\) and the conditional probability of \(P(Y \ge y|X \le x)\) were estimated by using the selected Clayton copula. The results from contour lines of the bivariate return period demonstrate that the probability of drought occurrences affected by both reservoir storage and precipitation/outflow is smaller than that by either of the variables. Meanwhile, the concurrent drought probability between precipitation and reservoir storage in the upstream is higher than that in the downstream. The estimated conditional probability offers useful information on how much the regular storage could be remained under some specified drought levels of precipitation/upstream outflow. Therefore, the results are helpful for improving the operation strategies of the cascade reservoirs for the adaptive management of drought under different climate variations.  相似文献   

13.
Agricultural productivity in South Africa is negatively affected by drought as a result of frequent periodic dry spells and increasing crop water demands resulting in poor crop development and low yields. Thus, we embarked on this study which aims at investigating dry spell occurrences in relation to growing season of maize in the Luvuvhu River Catchment. Daily rainfall data (1945–2014) from 12 stations which represent the catchment fairly well was utilized in this study. Three consecutive planting dates were staggered based on three consecutive onsets of the rainy season. Dry spells were categorized into three groups: short, medium and long dry spells. The data was then subjected to theoretical distribution fitting using the Anderson–Darling goodness-of-fit test; and probabilities of occurrence were computed using a probabilistic model that best fits the data. Trend analysis was performed on the frequency of dry spells per growing period using the non-parametric Spearman's rank correlation test. Out results indicated high probabilities (≥80%) of short dry spells at all the stations irrespective of the timing of planting. Further analysis revealed that a risk of yield reduction with planting following the first onset of rains was higher than that with planting following the second and third onsets. In order to minimize this risk, farmers can be advised to plant between mid-November to mid-December. Trend analysis indicated no trend for all the various dry spell lengths except for Thohoyandou with a decreasing trend and Sigonde with a weak increasing trend in long dry spells. Such findings can be used to describe drought conditions for improvement of agricultural productivity and food security, in a given area.  相似文献   

14.
Hao Y  Yeh TC  Wang Y  Zhao Y 《Ground water》2007,45(1):46-52
There are approximately 470,000 km(2) of karst aquifers that feed many large springs in North China. Turbulent flow often exists in these karst aquifers, which means that the classical ground water model based on Darcy's law cannot be applied here. Ground water data are rare for these aquifers. As a consequence, it is difficult to quantitatively investigate ground water flow in these karst systems. The purpose of this study is to develop a parsimonious model that predicts karst spring discharge using gray system theory. In this theory, a white color denotes a system that is completely characterized and a black color represents a system that is totally unknown. A gray system thus describes a complex system whose characteristics are only partially known or known with uncertainty. Using this theory, we investigated the karst spring discharge time series over different time scales. First, we identified three specific components of spring discharge: the long-term trend, periodic variation, and random fluctuation. We then used the gray system model to simulate the long-term trend and obtain periodic variation and random fluctuation components. Subsequently, we developed a predictive model for karst spring discharge. Application of the model to Liulin Springs, a representative example of karst springs in northern China, shows that the model performs well. The predicted results suggest that the Liulin Springs discharge will likely decrease over time, with small fluctuations.  相似文献   

15.
Flow from artificial subsurface (tile) drainage systems may be contributing to increasing baseflow in Midwestern rivers and increased losses of nitrate‐nitrogen. Standard hydrograph analysis techniques were applied to model simulation output and field monitoring from tile‐drained landscapes to explore how flow from drainage tiles affects stream baseflow and streamflow recession characteristics. DRAINMOD was used to simulate hydrologic response from drained (24 m tile spacing) and undrained agricultural systems. Hydrograph analysis was conducted using programs PART and RECESS. Field monitoring data were obtained from several monitoring sites in Iowa typical of heavily drained and less‐drained regions. Results indicate that flow from tile drainage primarily affects the baseflow portion of a hydrograph, increasing annual baseflow in streams with seasonal increases primarily occurring in the late spring and early summer months. Master recession curves from tile‐drained watersheds appear to be more linear than less‐tiled watersheds although comparative results of the recession index k were inconsistent. Considering the magnitude of non‐point source pollutant loads coming from tile‐drained landscapes, it is critical that more in‐depth research and analysis be done to assess the effects of tile drainage on watershed hydrology if water quality solutions are to be properly evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

Recession curves are widely used in hydrological studies and projects, such as in rivers, streams or springs. However, no cave drip water has been analysed with recession curves. In this paper, four cave drips were monitored in the Velika Pasica Cave, in order to discover the water flow and storage properties of the epikarst. Various methods were applied in the recession analysis, combining the hydrological characteristics of the four drips: for the slow water in the epikarst, the matching strip method was the identified as the appropriate model for the drip water recession analysis. According to the recession coefficient k, the water flow in the epikarst was divided into fast flow, intermediate flow and slow flow. The volume of water retained in the reservoir (the epikarst storage) could be presented as a function of its specific recession coefficient.
EDITOR D.Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   

17.
Time patterns of karst denudation in northwest Georgia (U.S.A.) were investigated at three spring sites for 12 months and at five stream sites for 10 years. Rainfall was evenly distributed and showed no significant seasonality. At the springs, as well as the streams, water hardness was largely controlled by discharge. At the springs, soil pCO2 and water pH were strongly correlated (r + -0·69 to -0·83). Solute transport in spring waters was highly seasonal, with two conduit flow springs removing more limestone in the winter, and the diffuse flow spring removing more during the growing season. At the stream sites, most denudation occurred during the winter and spring seasons, and least during the summer. Fourier analysis showed that variations in denudation occur on deterministic (long-wave) as well as stochastic (shortwave) time scales. As contributing variables, discharge varied in short-wave and long-wave cycles, whereas soil pCO2 showed only a long-wave cycle. The 12 month deterministic cycles were the most important, with changes in discharge taking precedence over soil pCO2. Time series regression explains up to 69 per cent of changes in denudation through rain and soil pCO2. Time cycles in available water are the key controlling factor of denudation, and amounts of available soil CO2 may not be as important in the temporal patterns of karst downwearing as has been believed previously.  相似文献   

18.
Hydrologic models are useful to understand the effects of climate and land‐use changes on dry‐season flows. In practice, there is often a trade‐off between simplicity and accuracy, especially when resources for catchment management are scarce. Here, we evaluated the performance of a monthly rainfall–runoff model (dynamic water balance model, DWBM) for dry‐season flow prediction under climate and land‐use change. Using different methods with decreasing amounts of catchment information to set the four model parameters, we predicted dry‐season flow for 89 Australian catchments and verified model performance with an independent dataset of 641 catchments in the United States. For the Australian catchments, model performance without catchment information (other than climate forcing) was fair; it increased significantly as the information to infer the four model parameters increased. Regressions to infer model parameters from catchment characteristics did not hold for catchments in the United States, meaning that a new calibration effort was needed to increase model performance there. Recognizing the interest in relative change for practical applications, we also examined how DWBM could be used to simulate a change in dry‐season flow following land‐use change. We compared results with and without calibration data and showed that predictions of changes in dry‐season flow were robust with respect to uncertainty in model parameters. Our analyses confirm that climate is a strong driver of dry‐season flow and that parsimonious models such as DWBM have useful management applications: predicting seasonal flow under various climate forcings when calibration data are available and providing estimates of the relative effect of land use on seasonal flow for ungauged catchments.  相似文献   

19.
The plotting of the time rate of change in discharge dQ/dt versus discharge Q has become a widely used tool for analyzing recession data since Brutseart and Nieber [Water Resour Res 13 (1977) 637–643] proposed the method. Typically the time increment Δt over which the recession slope dQ/dt is approximated is held constant. It is shown here this that leads to upper and lower envelopes in graphs of log(−dQ/dt) versus log(Q) that have been observed in previous studies but are artifacts. The use of constant time increments also limits accurate representation of the recession relationship to the portion of the hydrograph for which the chosen time increment is appropriate. Where dQ/dt varies by orders of magnitude during recession, this may exclude much of the hydrograph from analysis. In response, a new method is proposed in which Δt for each observation in time is properly scaled to the observed drop in discharge ΔQ. It is shown, with examples, how the new method can succeed in exposing the underlying relationship between dQ/dt and Q where the standard method fails.  相似文献   

20.
This paper studies the statistics of the soil moisture condition and its monthly variation for the purpose of evaluating drought vulnerability. A zero-dimensional soil moisture dynamics model with the rainfall forcing by the rectangular pulses Poisson process model are used to simulate the soil moisture time series for three sites in Korea: Seoul, Daegu, and Jeonju. These sites are located in the central, south-eastern, and south-western parts of the Korean Peninsular, respectively. The model parameters are estimated on a monthly basis using hourly rainfall data and monthly potential evaporation rates obtained by the Penmann method. The resulting soil moisture simulations are summarized on a monthly basis. In brief, the conclusions of our study are as follows. (1) Strong seasonality is observed in the simulations of soil moisture. The soil moisture mean is less than 0.5 during the dry spring season (March, April, and June), but other months exceed the 0.5 value. (2) The spring season is characterized by a low mean value, a high standard deviation and a positive skewness of the soil moisture content. On the other hand, the wet season is characterized by a high mean value, low standard deviation, and negative skewness of the soil moisture content. Thus, in the spring season, much drier soil moisture conditions are apparent due to the higher variability and positive skewness of the soil moisture probability density function (PDF), which also indicates more vulnerability to severe drought occurrence. (3) Seoul, Daegue, and Jeonju show very similar overall trends of soil moisture variation; however, Daegue shows the least soil moisture contents all through the year, which implies that the south-eastern part of the Korean Peninsula is most vulnerable to drought. On the other hand, the central part and the south-western part of the Korean peninsula are found to be less vulnerable to the risk of drought. The conclusions of the study are in agreement with the climatology of the Korean Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号