首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dynamics of phytoplankton species populations recorded during the 3-week, iron-fertilization experiment EisenEx carried out in spring in the Antarctic Polar Frontal Zone are presented and discussed as the difference between growth and mortality rates. Only two cosmopolitan diatom species, the centric Chaetoceros debilis and the pennate Pseudo-nitzschia lineola, increased population density exponentially throughout the experiment to 150- and 90-fold of initial values, respectively. Because C. debilis initial abundance was tenfold lower than that of P. lineola, the two contributed 1% and 21% to bloom biomass, respectively at the end of the experiment, high-lighting the role of seeding in bloom formation. The other significant species increased population size at a linear rate throughout the experiment or for a short spurt phase to 3- to 18-fold of initial values. Conservative estimates of mortality rates within diatom species populations were obtained by comparing net accumulation rates of full cells with those of empty and broken frustules. The ratios were consistent over time for the various species but varied widely between them. The species-specific variation can be explained by differences in both growth and mortality rates, the latter partly due to either selective grazing or avoidance by the large protozoo- and metazooplankton populations present. Selective predation by the abundant copepod populations on protistan grazers of diatoms (ciliates and heterotrophic dinoflagellates) apparently aided diatom biomass build-up. The response patterns of populations of the phytoplankton species present fall into six categories comprising disparate species, indicating that phylogeny is a poor predictor of ecology. The group that did not respond to fertilization was the most diverse and included both endemic and cosmopolitan as well as background and bloom-forming species. This lack of response to the advent of favorable growth conditions indicates that proximate factors during EisenEx triggered growth only in some species but had little effect on others. We attribute the differences in behavior to ultimate factors such as seasonal effects on life cycles and other internal constraints on growth rates. The implications for our understanding of the evolutionary ecology of phytoplankton and its impact on global biogeochemical cycles are pointed out.  相似文献   

3.
As part of the KErguelen: compared study of the Ocean and the Plateau in Surface water (KEOPS) project in late summer 2005, we examine the phytoplankton community composition and associated primary production in the waters surrounding the Kerguelen Archipelago, with the emphasis on two contrasted environments: (i) the Kerguelen Plateau, where a large bloom occurs annually, and (ii) the high-nutrient low-chlorophyll (HNLC) offshore waters. A biomarker pigment approach was used to assess the community composition in terms of chlorophyll biomass of three phytoplankton size classes, namely micro-, nano-, and picophytoplankton. The second objective was to evaluate a global class-specific approach for estimating the contribution of the three pigment-based size classes to the primary production in the study area. To do so, primary production rates associated with each phytoplankton class were computed from the class-specific chlorophyll biomass coupled to a class-specific primary production model, and compared with in situ measurements of size-fractionated 13C-based primary production. The iron-enriched bloom region was dominated by microphytoplankton (diatoms), which contributed 80–90% to the total primary production (of ≈1 g C m?2 d?1). In the HNLC area, the primary production was about 0.30 g C m?2 d?1, mainly (65%) achieved by small diatoms and nanoflagellates. The model results show a good overall agreement between predicted and measured total primary production rates. In terms of size classes, agreements were higher for the bloom region than for the HNLC waters. Discrepancies in this complex iron-limited area may be explained essentially by the smaller size of diatoms, or a different set of photophysiological properties.  相似文献   

4.
The chemical speciation of iron was determined in the Southern Ocean along a transect from 48 to 70°S at 20°E. Dissolved iron concentrations were low at 0.1–0.6 nM, with average concentrations of 0.25±0.13 nM. Organic iron complexing ligands were found to occur in excess of the dissolved iron concentration at 0.72±0.23 nM (equivalent to an excess of 0.5 nM), with a complex stability of log KFeL′=22.1±0.5 (on the basis of Fe3+ and L′). Ligand concentrations were higher in the upper water column (top 200 m) suggesting in situ production by microorganisms, and less at the surface consistent with photochemical breakdown. Our data are consistent with the presence of stable organic iron-complexing ligands in deep global ocean waters at a background level of ∼0.7 nM. It has been suggested that this might help stabilise iron at levels of ∼0.7 nM in deep ocean waters. However, much lower iron concentrations in the waters of the Southern Ocean suggest that these ligands do not prevent the removal of iron (by scavenging or biological uptake) to well below the concentration of these ligands. Scavenging reactions are probably inhibited by such ligand competition, so it is likely that biological uptake is the chief cause for the further removal of iron to these low levels in waters that suffer from very low iron inputs.  相似文献   

5.
To verify the hypothesis that the growth of phytoplankton in the Western Subarctic Gyre (WSG), which is located in the northwest subarctic Pacific, is suppressed by low iron (Fe) availability, an in situ Fe fertilization experiment was carried out in the summer of 2001. Changes over time in the abundance and community structure of phytoplankton were examined inside and outside an Fe patch using phytoplankton pigment markers analyzed by high-performance liquid chromatography (HPLC) and flow cytometry (FCM). In addition, the abundance of heterotrophic bacteria was also investigated by FCM. The chlorophyll a concentration was initially ca. 0.9 μg l−1 in the surface mixed layer where diatoms and chlorophyll b-containing green algae (prasinophytes and chlorophytes) were predominant in the chlorophyll biomass. After the iron enrichment, the chlorophyll a concentration increased up to 9.1 μg l−1 in the upper 10 m inside the Fe patch on Day 13. At the same time, the concentration of fucoxanthin (a diatom marker) increased 45-fold in the Fe patch, and diatoms accounted for a maximum 69% of the chlorophyll biomass. This result was consistent with a microscopic observation showing that the diatom Chaetoceros debilis had bloomed inside the Fe patch. However, chlorophyllide a concentrations also increased in the Fe patch with time, and reached a maximum of 2.2 μg l−1 at 5 m depth on Day 13, suggesting that a marked abundance of senescent algal cells existed at the end of the experiment. The concentration of peridinin (a dinoflagellate marker) also reached a maximum 24-fold, and dinoflagellates had contributed significantly (>15%) to the chlorophyll biomass inside the Fe patch by the end of the experiment. Concentrations of 19′-hexanoyloxyfucoxanthin (a prymnesiophyte marker), 19′-butanoyloxyfucoxanthin (a pelagophyte marker), and alloxanthin (a cryptophyte marker) were only incremented a few-fold increment inside the Fe patch. On the contrary, chlorophyll b concentration reduced to almost half of the initial level in the upper 10 m water column inside the Fe patch at the end of the experiment. A decrease with time in the abundance of eukaryotic ultraphytoplankton (<ca. 5 μm in size), in which chlorophyll b-containing green algae were possibly included was also observed by FCM. Overall, our results indicate that Fe supply can dramatically alter the abundance and community structure of phytoplankton in the WSG. On the other hand, cell density of heterotrophic bacteria inside the Fe patch was maximum at only ca. 1.5-fold higher than that outside the Fe patch. This indicates that heterotrophic bacteria abundance was little respondent to the Fe enrichment.  相似文献   

6.
Two in situ iron-enrichment experiments were conducted in the Pacific sector of the Southern Ocean during summer 2002 (SOFeX). The “north patch,” established within the Subantarctic Zone (∼56°S), was characterized by high nitrate (∼21 mmol m−3) but low silicic acid (2 mmol m−3) concentrations. North patch iron enrichment increased chlorophyll (Chl) by 12-fold to 2.1 mg m−3 and primary productivity (PPEU) by 8-fold to 188 mmol C m−2 d−1. Surprisingly, despite low silicic acid concentrations, diagnostic pigment and size-fraction composition changes indicated an assemblage shift from prymnesiophytes toward diatoms. The “south patch,” poleward of the Southern Boundary of the Antarctic Circumpolar Current (SBACC) (∼66°S), had high concentrations of nitrate (∼27 mmol m−3) and silicic acid (64 mmol m−3). South patch iron enrichment increased Chl by 9-fold to 3.8 mg m−3 and PPEU 5-fold to 161 mmol C m−2 d−1 but, notably, did not alter the phytoplankton assemblage from the initial composition of ∼50% diatoms. South patch iron addition also reduced total particulate organic carbon:Chl from ∼300 to 100; enhanced the presence of novel non-photosynthetic, but fluorescent, compounds; and counteracted a decrease in photosynthetic performance as photoperiod decreased. These experiments show unambiguously that in the contemporary, high nitrate Southern Ocean increasing iron supply increases primary productivity, confirming the initial premise of the Martin Iron Hypothesis. However, despite a 5-fold increase in PPEU under iron-replete conditions in late summer, the effect of iron on annual productivity in the Southern Ocean poleward of the SBACC is limited by seasonal ice coverage and the dark of polar winter.  相似文献   

7.
Despite large uncertainties in the fertilization efficiency, natural iron fertilization studies and some of the purposeful iron enrichment studies have demonstrated that Southern Ocean iron fertilization can lead to a significant export of carbon from the sea surface to the ocean interior. From an economic perspective the potential of ocean iron fertilization (OIF) is far from negligible in relation to other abatement options. Comparing the range of cost estimates to the range of estimates for forestation projects they are in the same order of magnitude, but OIF could provide more carbon credits even if high discount rates are used to account for potential leakage and non-permanence. However, the uncertainty about undesired adverse effects of purposeful iron fertilization on marine ecosystems and biogeochemistry has led to attempts to ban commercial and, to some extent, scientific experiments aimed at a better understanding of the processes involved, effectively precluding further consideration of this mitigation option. As regards the perspective of public international law, the pertinent agreements dealing with the protection of the marine environment indicate that OIF is to be considered as lawful if and to the extent to which it represents legitimate scientific research. In this respect, the precautionary principle can be used to balance the risks arising out of scientific OIF activities for the marine environment with the potential advantages relevant to the objectives of the climate change regime. As scientific OIF experiments involve only comparatively small negative impacts within a limited marine area, further scientific research must be permitted to explore the carbon sequestration potential of OIF in order to either reject this concept or integrate it into the flexible mechanisms contained in the Kyoto Protocol.  相似文献   

8.
Temporal changes in the abundance, community composition, and photosynthetic physiology of phytoplankton in surface waters were investigated during the second in situ iron (Fe) fertilization experiment in the NW subarctic Pacific (SEEDS-II). Surface chlorophyll a concentration was 0.75 mg m−3 on the day before the first Fe enrichment (i.e. Day 0), increased ca. 3-fold until Day 13 after two Fe additions, and thereafter declined with time. The photochemical quantum efficiency (Fv/Fm) and functional absorption cross-section (σPSII) of photosystem II for total phytoplankton in surface waters increased and decreased inside the Fe-enriched patch through Day 13, respectively. These results indicate that the photosynthetic physiological condition of the phytoplankton improved after the Fe infusions. However, the maximum Fv/Fm value of 0.43 and the maximum quantum yield of carbon fixation (φmax) of 0.041 mol C (mol photon)−1 during the development phase of the bloom were rather low, compared to their theoretical maximum of ca. 0.65 and 0.10 mol C (mol photon)−1, respectively. Diatoms, which were mainly composed of oceanic species, did not bloom, and autotrophic nanoflagellates such as cryptophytes and prasinophytes became predominant in the phytoplankton community inside the Fe-enriched patch. In ferredoxin/flavodoxin assays for micro-sized (20–200 μm in cell length) diatoms, ferredoxin was not detected but flavodoxin expressions consistently occurred with similar levels both inside and outside the Fe-enriched patch, indicating that the large-sized diatoms were stressed by Fe bioavailability inside the Fe-enriched patch even after the Fe enrichments. Our data suggest that the absence of a Fe-induced large-sized diatom bloom could be partly due to their Fe stress throughout SEEDS-II.  相似文献   

9.
南大洋浮游植物现存量对颗粒有机碳的贡献   总被引:5,自引:1,他引:5  
根据中国第15、16次南极考察观测的颗粒有机碳、叶绿素a浓度的数据,探讨浮游植物现存量对南大洋颗粒有机碳的贡献。结果表明,普里兹湾内浮游植物碳对颗粒有机碳的贡献高于湾北部的大洋区,真光层上部浮游植物碳对颗粒有机碳的贡献高于深层水。同时分析两个航次测区叶绿素a浓度和航程途中叶绿素a浓度的分布,以期了解浮游植物在南大洋颗粒有机碳来源中的作用。  相似文献   

10.
Nutrient-enrichment bottle experiments in the northwestern Indian Ocean surface waters were conducted to investigate phytoplankton growth following enrichments with either NH4+, NO3, Fe or Fe + NO3. Stimulation of phytoplankton growth could be achieved by the addition of either NH4+ or NO3 under the ambient Fe concentrations, but the most significant increases in Chl a, POC, and cell densities were observed in the Fe + NO3-amended culture. Iron addition caused more rapid responses of phytoplankton growth in the Fe + NO3 treatment than those in the NO3 and NH4 treatment. However, the Fe-enrichment treatment revealed minimal growth of phytoplankton because of severe major nutrient deficiency and was similar to the control treatment. Increases in the cell density of diatoms and spherical phytoplankton cells (< 10 μm) were significant in the NH4+-enriched samples, whereas NO3 enrichment alone had little effect on the diatoms. Simultaneous addition of Fe and NO3 stimulated maximal growth of phytoplankton, in particular in diatoms, coccolithophorids and Phaeocystis type colonies. However, the dominance of coccolithophorids and Phaeocystis type colonies in the Fe + NO3 treatment may be interpreted as resulting from Si-limitation. The high N/P ratio for phytoplankton nutrient uptake in the N-amended culture indicates the possibility of some P-limited growth. From these results, we conclude that in the northwestern Indian Ocean, Fe and major nutrients are co-limiting phytoplankton production during the northeast monsoon. Iron appeared to affect the ability of phytoplankton to respond quickly to transient nutrient inputs.  相似文献   

11.
We assessed whether short-term photoacclimation responses of natural phytoplankton populations in the Drake Passage (Southern Ocean) were affecting protection from photodamage as cells are mixed up to the surface from depth. To this end, we measured phytoplankton fluorescence characteristics and their ratio of xanthophyll cycle pigment to photosynthetic pigments within the upper mixed layer (UML) and in short-term deck incubation experiments. Phytoplankton within the UML photoacclimated by increasing their ratio of xanthophyll cycle (diadinoxanthin [dd] and diatoxanthin [dt]) pigments to chlorophyll a. The photoacclimation processes observed within the UML did, however, not influence the protection of phytoplankton from photodamage during short-term near-surface irradiance experiments. Exposure to near-surface irradiance resulted in photodamage in all experiments, regardless of the phytoplankton community composition and irradiance levels. Incubating phytoplankton for six hours at either 2% or 50% of surface irradiance prior to exposure to near-surface irradiance did not alter the photodamage characteristics. This suggests that short-term photoacclimation processes within the UML are not adequate to protect phytoplankton from photodamage when cells are mixed up to the surface from depth, and that repair of damaged photosystems is crucial for maintaining photosynthesis under fluctuating irradiance conditions, even at very low mean irradiance levels. Likely, continuously operating photoacclimation processes offset to some extent the negative effects of photodamage on photosynthetic performance, albeit with increased metabolic costs.  相似文献   

12.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

13.
Electrochemical methods based on adsorption of organic molecules at the mercury electrode-solution interface were used to investigate surfactant production by marine phytoplankton. Six species of marine phytoplankton, representing the classes of Bacillariophyceae, Haeptophyceae, Chlorophyceae and Cryptophyceae, were studied in batch cultures.Our experimental results showed that surfactants were produced in culture media by healthy exponential growing cells. The measured response was found to depend on the particular species and the age of the culture.Total surfactant content in culture media generally increased with cell density, while surfactants per cell showed an inverse relation to cell density. However, we found that in Cryptomonas culture medium, during the exponential growth, excretion of the insoluble surfactant material per cell was independent of cell concentration.In addition to culture experiments, surfactant activity at several northern Adriatic stations was measured during various stages of phytoplankton bloom. It was concluded that a significant part of surfactant activity in a seawater column is due to phytoplankton production.  相似文献   

14.
Iron has been found to limit primary productivity in high nutrient, low chlorophyll regions of the oceans, including the Southern Ocean. Here we assess the relative magnitudes and geographical distributions of the sources of iron (sedimentary, atmospheric, icebergs and sea ice) to the Southern Ocean, and their impact on productivity. We present an iron cycling model, based on the assumptions of iron and light limitation of primary production, which is embedded in an eddy resolving ocean general circulation model. We find that the injection depth of the various iron inputs determines their availability for driving production because dissolved iron may be scavenged prior to it entering the illuminated mixed layer where it can drive primary production. The model suggests that production is predominantly regulated by sediment-derived iron sources rather than icebergs, sea ice or atmospheric dust. We note non-linear response in productivity to changes in the strength of one or more iron sources due to scavenging. Sea ice influences productivity by modifying the timing of iron supply to the euphotic zone. We also show that in the Scotia Sea the majority of productivity is driven by sediment-sourced iron from the Antarctic Peninsula, with additional local hotspots driven by island sources.  相似文献   

15.
Two sets of high-resolution subsurface hydrographic and underway surface chlorophyll a (Chl a) measurements are used, in conjunction with satellite remotely sensed data, to investigate the upper layer oceanography (mesoscale features and mixed layer depth variability) and phytoplankton biomass at the GoodHope line south of Africa, during the 2010–2011 austral summer. The link between physical parameters of the upper ocean, specifically frontal activity, to the spatially varying in situ and satellite measurements of Chl a concentrations is investigated. The observations provide evidence to show that the fronts act to both enhance phytoplankton biomass as well as to delimit regions of similar chlorophyll concentrations, although the front–chlorophyll relationships become obscure towards the end of the growing season due to bloom advection and ‘patchy’ Chl a behaviour. Satellite ocean colour measurements are compared to in situ chlorophyll measurements to assess the disparity between the two sampling techniques. The scientific value of the time-series of oceanographic observations collected at the GoodHope line between 2004 to present is being realised. Continued efforts in this programme are essential to better understand both the physical and biogeochemical dynamics of the upper ocean in the Atlantic sector of the Southern Ocean.  相似文献   

16.
Although the important role of viruses in marine biogeochemical cycles has been established in recent years, virus activity (including changes in this activity) has been largely ignored during mesoscale iron (Fe)-fertilization experiments relative to other processes. This is of particular interest as viruses have been shown to be critical to the transformation of Fe from the particulate (i.e., biological) to the dissolved pools. The goal of the present study was to evaluate changes in the virus-mediated lysis of heterotrophic bacterial cells following a shift in ecosystem trophic status brought about by a mesoscale Fe addition in the subarctic Pacific Ocean. Virus production rates, estimated by a reduction and reoccurrence assay, were coupled with transmission electron microscopy estimates of burst size and direct counts of virus and bacterial abundance. Fe fertilization of the upper mixed layer resulted in significant yet weak increases in virus production rates during the 12 days of observation immediately after fertilization, although the burst size (viruses produced per lytic event) and the percentage of visibly infected cells remained constant. The results imply that increases in virus production rates were most likely tied to a decreased lytic cycle length or the stimulation of lysogenized cells following the stimulation of primary and secondary productivity by the addition of Fe. The results also indicate that virus-induced cell-lysis regenerated an estimated nearly 200 pmol L−1 Fe daily, providing a significant return of Fe back to the water column, which may be critical in the maintenance of this added Fe as resident.  相似文献   

17.
As part of two USJGOFS cruises, we investigated spatial variability in phytoplankton properties across the strong environmental gradient associated with the Antarctic Polar Frontal Zone during late austral summers of 1997 and 1998. Cell properties, including size and an index of pigment content as well as photosynthetic efficiency (as indicated by relative variable fluorescence), changed dramatically across this frontal region. A general trend toward reduced photosynthetic efficiency south of the Polar Front was correlated with low dissolved iron concentration and is consistent with physiological iron limitation in the phytoplankton. We detected no significant differences in photosynthetic efficiency among different size classes of the dominant pico- to nanophytoplankton, despite a systematic community level shift toward larger sized cells south of the Polar Front. In contrast to other cells, those classified as cryptophyte algae showed relatively high photosynthetic efficiency in low iron waters; however, this group was never found in high abundance. One group, all cells ⩽2 μm, showed an unexpected increase in intracellular pigment content (based on single cell chlorophyll fluorescence measurements) south of the Polar Front where dissolved iron concentration and the cells’ relative abundance were low. Overall, these results suggest that group- or size-specific differences in physiological status were not directly regulating community structure in the pico- to nanophytoplankton during the late summer season; other processes, such as differential grazing or sinking losses, must be important.  相似文献   

18.
In this review article, plankton community structure observations are analyzed both for artificial iron fertilization experiments and also for experiments dedicated to the study of naturally iron-fertilized systems in the Atlantic, Indian and Pacific sectors of the Southern Ocean in the POOZ (Permanently Open Ocean Zone) and the PFZ (Polar Frontal Zone). Observations made in natural systems are combined with those from artificially perturbed systems, in order to evaluate the seasonal evolution of pelagic communities, taking into account controlling factors related to the life cycles and the ecophysiology of dominant organisms. The analysis considers several types of planktonic communities, including both autotrophs and heterotrophs. These communities are spatially segregated owing to different life strategies. A conceptual general scheme is proposed to account for these observations and their variability, regardless of experiment type. Diatoms can be separated into 2 groups: Group 1 has slightly silicified fast growing cells that are homogeneously distributed in the surface mixed layer, and Group 2 has strongly silicified slowly growing cells within discrete layers. During the growth season, Group 1 diatoms show a typical seasonal succession of dominant species, within time windows of development that are conditioned by physical factors (light and temperature) as well as endogenous specific rhythms (internal clock), and biomass accumulation is controlled by the availability of nutrients. Group 1 diatoms are not directly grazed by mesozooplankton which is fed by protozooplankton, linking the microbial food web to higher trophic levels. Instead, successive dominant species of Group 1 are degraded via bacterial activity at the end of their growth season. Organic detritus fragments feed protozooplankton and mesozooplankton. The effective silicon pump leads to the progressive disappearance of silicic acid in surface waters. In contrast, Group 2 is resistant to grazing due to its strong silicification, and its biomass accumulates continuously but relatively slowly throughout the productive period. Group 2 diatoms are concentrated at or near the seasonal pycnocline and thus benefit from upward nutrient fluxes by diapycnal mixing. The decrease in light and the deep convective mixing in the fall produce both light and nutrient limitation leading to a massive carbon export of Group 2 diatoms, a major annual event of the biological pump. This scheme describes the seasonal evolution of plankton communities in surface waters of the Southern Ocean. The scheme could probably be extended to ecosystems that are characterized by a seasonal bloom under influence of iron or other nutrients.  相似文献   

19.
An iron enrichment experiment, EisenEx, was performed in the Atlantic sector of the Southern Ocean during the Antarctic spring of 2000. Deck incubations of open ocean water were performed to investigate the influence of ultraviolet B (UVB: 280–315 nm) and ultraviolet A (UVA: 315–400 nm) on the speciation of iron in seawater, using an addition of the radioisotopes 59Fe(III) (1.25 nM) or 55Fe(III) (0.5 nM). Seawater was sampled inside and outside the iron-enriched region. The radioisotopic Fe(II) concentration was monitored during daylight under three different light conditions: the full solar spectrum (total), total minus UVB, and total minus UVB+UVA. A distinct diel cycle was observed with a clear distinction between the three different light regimes. A clear linear relationship was found for the concentration of radioisotopic Fe(II) versus irradiance. UVB produced most of the Fe(II) followed by UVA and visible light (VIS: 400–700 nm), respectively. UVB produced 4.89 and 0.69 pM m2 W−1 radioisotopic Fe(II) followed by UVA with 0.33 and 0.10 pM m2 W−1 radioisotopic Fe(II) and VIS with 0.04 and 0.03 pM m2 W−1 radioisotopic Fe(II).  相似文献   

20.
Short-term iron enrichment experiments were carried out with samples collected in areas with different phytoplankton activity in the northern North Sea and northeast Atlantic Ocean in the summer of 1993. The research area was dominated by high numbers of pico-phytoplankton, up to 70,000 ml−1. Maximum chlorophyll a concentrations varied from about 1.0 μg l−1 in a high-reflectance zone (caused by loose coccoliths, remnants from a bloom of Emiliania huxleyi) and about 3.5 μg l−1 in a zone in which the phytoplankton were growing, to about 0.5 μg l−1 in the northeast Atlantic Ocean. From the high-reflectance zone to the northeast Atlantic Ocean, nitrate concentrations increased from 0.5 μM to 6.0 μM. Concentrations of reactive iron in surface water showed an opposite trend and decreased from about 2.6 nM in the high-reflectance zone to <1.0 nM in the northeast Atlantic Ocean. In the research area, no signs of true iron deficiency were found, but iron enrichments in the high-reflectance zone, numerically dominated by Synechococcus sp., resulted in increased nitrate uptake. Ammonium uptake was hardly affected. Strong support for the effect of Fe on cell physiology is given by the increase in the f-ratio. Net growth rates of the phytoplankton (changes in cell numbers over 24 h) were almost unchanged. Phytoplankton collected from the northeast Atlantic Ocean, did not show changes in the nitrogen metabolism upon addition of iron. Net growth rates in these incubations were low or negative, with only slightly higher values with additional iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号