首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Karpinsky  Vadim N.  Okunev  Oleg V. 《Solar physics》1998,183(2):277-282
Magnetic flux tubes are considered to be a possible source of observed brightness variations on the extreme limb of the Sun. A computer code to simulate the brightness fluctuations is developed. It follows from numerical modeling that a filling factor of f=4% is required to explain the observed fine structure. Such a value is typical for the boundaries of supergranules. Tubes produce a local maximum of intensity just inside the limb.  相似文献   

2.
O. Engvold 《Solar physics》1980,67(2):351-355
Observed H brightness versus size of emission substructures of quiescent prominences are compared with values predicted from thermodynamical models. The measured size of an emission element of a given brightness is substantially less than the theoretical value.Two possible causes for the discrepancy are suggested: (1) The partial filling of a recording aperture, due to the prominence fine structure, may affect the measurements seriously. Caution is therefore urged against using face values of observed brightness vs ratios in model calculations in cases of partly optically thick lines. (2) Changes of individual fine structure elements on a time scale of a few minutes implies that the prominence plasma may be in a non-stationary radiative state.  相似文献   

3.
The fine structure of nonspot prominences are studied from H filtergrams. The size of the smallest prominence structures increases with height above the chromosphere. Some prominences contain structures close to 1/2 arc second, which is the spatial resolution in the present data. The effective thickness of many nonspot prominences ranges between 4 × 107 cm and 1.5 × 108 cm. An apparent downward directed motion is observed in the majority of the prominences. No preferred direction of the motion is seen in regions composed of comparatively large diffuse structures. Some bright threads are visible for 1 hr and longer. Bright knots have an average observed lifetime of about 8 min. The process of condensation and subsequent destruction of prominence fine structure appears to take place on a very short time scale compared to the life time of the regions where prominences may exist. The observed H brightness of the prominences in the present data may be accounted for as scattered chromospheric radiation.  相似文献   

4.
In the dynamical model of quiescent prominences presented in this paper, it is assumed that the ever-changing velocity field and brightness of the fine structure is due to MHD turbulence driven by an Alfvén-wave flux from below. It is shown that these waves become highly non-linear and are dissipated over relatively short scales in prominence matter. For magnetic field strengths lower than those observed in quiescent prominences, no closed arch structure can exist with the physical parameters observed. For higher field strengths the conditions for the creation of turbulence are not fulfilled. The momentum gained by prominence matter in the dissipation process, is shown to be of the right order of magnitude to provide the supporting force against gravity. ‘Edge’ effects find a simple explanation within the framework of this hypothesis. In the upper regions of a prominence one result of the dissipation may be the formation of open magnetic configurations, in keeping with the presence of streamers connected with quiescent prominences. Observational tests are proposed and discussed.  相似文献   

5.
G. Van Hoven  Y. Mok 《Solar physics》1993,147(1):199-202
The physical conditions causing the appearance of the low brightness temperature regions at 37 and 22 GHz are discussed. The source radiation stems from free-free processes (bremsstrahlung), and passes through the transparent chromosphere and corona. The absorption occurs either in the prominences or in coronal condensations with physical parameters between those of prominences and corona. A deficit in emission of the chromosphere-corona transition region in the vicinity of the inversion lines of the longitudinal component of the photospheric magnetic field could also result in the appearance of low temperature region.  相似文献   

6.
This is the first part of a paper devoted to a theoretical investigation of intensity fluctuations of radiation at the frequencies of a spectral line formed in a multicomponent stochastic atmosphere. It is assumed that the optical depth of structural elements and the power of the energy sources contained in them undergo random variations. The frequency dependence of the relative mean-square deviation of the intensity of radiation escaping from the atmosphere is determined. Two special cases are considered and it is shown that the behavior of this quantity is different, depending on which of the indicated characteristics of the medium undergoes random variations. The results make it possible to judge the character of random variations in the fine structure of a radiating medium from observations of it in the cores and wings of spectral lines. Recent observations of prominences made using the SUMER spectrometer in the SOHO international project served as the specific motivation for the work.  相似文献   

7.
Morozhenko  N. N. 《Solar physics》1974,39(2):349-362
Diffuse penetration of ionizing radiation into prominences with filamentary structure is considered. The equations of radiative transfer, ionization balance and steady state of the triplet system of the helium atom (with 27 levels and continuum) are solved for a chosen model of prominence. The calculated intensity ratios of helium and hydrogen lines for prominences of various brightness are compared with observations. Parameters of filamentary structure of prominences which are in a good agreement with observations are given.  相似文献   

8.
Karpinsky  Vadim N.  Okunev  Oleg V. 《Solar physics》1997,173(2):233-242
Fine structure of brightness inhomogeneities with I r.m.s. = 2.9% was discovered on the extreme limb of the Sun on the best quality white-light photographs obtained at the Soviet Stratospheric Solar Observatory. The concept is that temperature inhomogeneities are responsible for the limb structure. The real value T r.m.s. = 109K is required to explain our observations. Another possible explanation is that small-scale magnetic flux tubes with the realistic filling factor f* = 1% are the source of the limb brightness fluctuations.  相似文献   

9.
We investigate nonadiabatic hydrodynamic waves in a nongrey, radiating, thermally conducting, homogeneous atmosphere in LTE with a finite mean free path of photons. Avoiding the Eddington approximation the remaining simplifications in the basic equations are discussed, the generalized dispersion relation is analysed, and some wave properties in a grey model are studied. The properties of waves in a stratified atmosphere are analysed as well. In connection with the predicted properties of the nonadiabatic waves we discuss observations ofp-modes by measuring brightness fluctuations.  相似文献   

10.
P. Lantos 《Solar physics》1972,22(2):387-401
In order to avoid the disagreements and difficulties now found in the interpretation of quiet-Sun UV observations concerning the chromosphere-corona transition region, 6- and 11-cm maps obtained at cycle maximum with the Nançay radiotelescope are used in combination with existing measurements of the central brightness temperatures at centimetric wavelengths and with the hydrodynamic conservation equations so as to obtain an equatorial, quiet solar atmosphere model between 10000 K and 300000 K, in the interspicular regions. This model introduces a large ascending velocity in these regions. Some of the consequences of the model concerning the heating and replenishment of the corona are discussed. An explanation of sudden disappearance of quiescent prominences is suggested.  相似文献   

11.
Frances Tang 《Solar physics》1987,107(2):233-237
A survey of two years (1973 and 1979) of quiescent prominences reveals that substantially more (20 and 96% more, respectively, in the two years surveyed) quiescent prominences were formed on neutral lines between bipolar regions than on neutral lines inside bipolar regions.Present prominence models are based on the magnetic field configuration of the neutral lines of single bipolar regions, possibly because it is assumed that most prominences evolved from there. In view our new finding, a new model is needed in which the evolution begins at the boundary of two adjacent bipolar regions.  相似文献   

12.
Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32?–?9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6?–?3.6 mm (Band 3) and 1.1?–?1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.  相似文献   

13.
A new generation of radio telescopes are currently being built with the goal of tracing the cosmic distribution of atomic hydrogen at redshifts 6–15 through its 21-cm line. The observations will probe the large-scale brightness fluctuations sourced by ionization fluctuations during cosmic reionization. Since detailed maps will be difficult to extract due to noise and foreground emission, efforts have focused on a statistical detection of the 21-cm fluctuations. During cosmic reionization, these fluctuations are highly non-Gaussian and thus more information can be extracted than just the one-dimensional function that is usually considered, i.e. the correlation function. We calculate a two-dimensional function that if measured observationally would allow a more thorough investigation of the properties of the underlying ionizing sources. This function is the probability distribution function (PDF) of the difference in the 21-cm brightness temperature between two points, as a function of the separation between the points. While the standard correlation function is determined by a complicated mixture of contributions from density and ionization fluctuations, we show that the difference PDF holds the key to separately measuring the statistical properties of the ionized regions.  相似文献   

14.
It has been suggested that slope fluctuations on the scale of pixel dimensions could be determined by statistical photoclinometry. A closer study of the surface of Phobos reveals variations in the scattering properties of single particles and micro-structures formed by the particles. In the present context, the photoclinometric method of brightness moments is extended to account for these variations by allowing statistical fluctuations in the phase function of the assumed Lommel-Seeliger scattering law. The mean slope on the investigated regions of Phobos has been found to vary from approximately 12 degrees on a 61m scale to approximately 7 degrees on a 216-272m scale. On the same scales, a value of the order of 2% has been obtained for the standard deviation of the scattering phase function. Hints of a fractal-like scale-invariance have been noticed in the covariance function of brightness.  相似文献   

15.
U. Anzer 《Solar physics》1990,130(1-2):403-406
In this Letter several observational aspects of prominences with inverse magnetic polarity are summarised. It is shown that these features can be explained in a natural way if inverse polarity prominences result from the merging of two adjacent bipolar magnetic regions.  相似文献   

16.
Louise Gray Young 《Icarus》1982,51(3):606-609
The transmission in the 7-μm “window” opf Venus was calculated for a 7-layer model atmosphere. The synthetic spectra show that radiation from the layer 20–30 km above the surface would reach the top of the atmosphere between 6.2 and 7.0 μm if there were no absorption besides the isotopic CO2 bands; for the 7.0- to 8.2-μm region, the radiating level would be located 40–50 km above the surface of Venus. The brightness temperature for the entire region is 430°K; for the above two regions it is 494 and 341°K, respectively.  相似文献   

17.
Prominences have been photographed through a coronagraph and an H Lyot filter with long exposure times. Faint H emissions are often detected down to the threshold 2 × 10-6 times of the Sun's brightness; they show definite structures but their relations to the low-level ordinary prominences are not very clear. Estimates are given for the density and thickness of such cool regions.  相似文献   

18.
The time dependence of Doppler shift and line-center intensity is simultaneously observed for the H emission of three solar prominences, each one during about two hours. Doppler oscillations with periods near one hour and amplitudes between 1 and 2 km s–1 are conspicuously visible in the recordings of all three prominences. Fourier analysis yields periods of 50, 60, and 64 min, as well as slight indications of short periods near 3 and 5 min. No oscillations are found in the line-center brightness.  相似文献   

19.
Nowadays the primordial importance of the magnetic field for coronal plasma physics is well known. However, its determination is only made in cool regions, mainly the photosphere and prominences. The extrapolation to the corona gives some indications of the magnetic structure but is not presently sufficiently reliable. So it is important to consider all the other observable physical effects of the magnetic field.In this puzzle, eruptive prominences may play a key role because the cool plasma is forced to move along field lines, which can then be visualized. In the strongest field regions, flares also give such information, while coronal mass ejections (CME) play such a role at larger scales. The magnetic field, which is at the base of the physical processes, is a common link between these different events.Observed properties of solar prominence eruptions are reviewed, then their relationships with CMEs and flares are discussed, with the help of present models. We emphasize the importance of magnetic measurements in future coordinated observations.Invited paper presented at the IAU Commission 10 Meeting on Dynamics and Structure of Prominences in Buenos Aires.  相似文献   

20.
We have studied the evolution of two dark H filaments as prominences during their disk passage from 12 to 19 February, 1992 and 6 to 17 March, 1992, using Kodaikanal Observatory H and Caii K spectroheliograms. Both the filaments were well outside the spot regions. However, they were connected to sunspots by small threads. Outside the spot regions, the filaments were also anchored between opposite polarity plage regions. Both the filaments were almost straight in the beginning. However, they acquired a curved shape (inverted U-shape) as the spot and plages underwent rotation. It is shown that rotation of the plage and spot plays an important role in the evolution of prominences, one serving as the anchor and the other imparting necessary shear. Once the shear reaches a critical value it starts unwinding the filaments, resulting in the fine structure of the two prominences studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号