首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere–ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961–1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region’s weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021–2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 °C) is projected to occur in the region, along with a precipitation decrease by 10–20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more sporadic, resulting in more days with below normal precipitation over most of the basin, and on the eastern part of the region, respectively. The changes in frequency and intra-seasonal variability highlights the usefulness of dynamics versus statistical downscaling techniques for climate change studies.  相似文献   

2.
Several 19-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the monthly mean sea surface temperature (SST) observed in 1970–1988 were examined to study extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST monthly variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis (CCA), which select from two time-dependent fields optimally correlated pairs of patterns, was applied to monthly anomalies of SST in the North Alantic and Pacific Oceans and monthly anomalies of sea level pressure and 500 hPa geopotential height in the Northern Hemisphere. In the GAGO run the best correlated atmospheric pattern is global and is characterized by north-south dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospehric response is more local than in the GAGO run with main centers in the North Atlantic and North Pacific, respectively. The extratropical response in the GAGO run is not equal to the sum of the responses in the MOGA and TOGA runs. The artificial meridional SST gradients at 25°–30°N probably influence the results of the MOGA and TOGA runs. The atmopsheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 hPa. winter climate. The normal modes with smallest eigenvalues are similar to the model leading variability modes and canonical patterns of 500 hPa geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans.  相似文献   

3.
The inter-annual variability of winter convective precipitation rate (CPR) in southeastern Europe and its connection to 500?hPa geopotential height (GH) is examined for the period 1950–2009 by using factor analysis and canonical correlation analysis. Two GH centers of action for CPR are found. The first one is located over Italy and it is associated with the typical winter depression activity regime over the Mediterranean Sea, controlling CPR in southern Italy, the southern Balkans, west Asia Minor, and the adjacent seas. The second one is located over the British Isles and it is associated with blocking activity over western Europe being responsible for a CPR seesaw teleconnection between (1) northern Italy, the Alps and the northwestern Balkans and (2) the south central Mediterranean Sea, south of Sicily. A CPR decrease in most of the areas under study and a CPR increase in the south central Mediterranean Sea are found.  相似文献   

4.
Extreme midlatitude cyclone characteristics, precipitation, wind speed events, their inter-relationships, and the connection to large-scale atmospheric patterns are investigated in simulations of a prolonged cold period, known as the Maunder Minimum from 1640 to 1715 and compared with today. An ensemble of six simulations for the Maunder Minimum as well as a control simulation for perpetual 1990 conditions are carried out with a coupled atmosphere-ocean general circulation model, i.e., the Climate Community System Model (CCSM). The comparison of the simulations shows that in a climate state colder than today the occurrence of cyclones, the extreme events of precipitation and wind speed shift southward in all seasons in the North Atlantic and the North Pacific. The extremes of cyclone intensity increases significantly in winter in almost all regions, which is related to a stronger meridional temperature gradient and an increase in lower tropospheric baroclinicity. Extremes of cyclone intensity in subregions of the North Atlantic are related to extremes in precipitation and in wind speed during winter. Moreover, extremes of cyclone intensity are also connected to distinct large-scale atmospheric patterns for the different subregions, but these relationships vanish during summer. Analyzing the mean 1,000 hPa geopotential height change of the Maunder Minimum simulations compared with the control simulation, we find a similar pattern as the correlation pattern with the cyclone intensity index of the southern Europe cyclones. This illustrates that changes in the atmospheric high-frequency, i.e., the simulated southward shift of cyclones in the North Atlantic and the related increase of extreme precipitation and wind speed in particular in the Mediterranean in winter, are associated with large-scale atmospheric circulation changes.  相似文献   

5.
The Younger Dryas (YD) stadial signified an interruption of the warming during the transition from the last glacial to the present interglacial. The mechanism responsible for this cooling is still uncertain, so valuable information concerning climate variability can be obtained by numerical simulation of the YD climate. We performed four experiments on the Younger Dryas climate with the Hamburg atmospheric general circulation model. Here we use the results of these experiments, which differed in prescribed boundary conditions, to characterize the atmospheric winter circulation during the YD stadial in the North Atlantic/European sector. The 10 year means of the following variables are presented: sea level pressure, 500 hPa geopotential heights and 200 hPa winds. In addition, we used daily values to calculate an index to assess the occurrence of blocking and strong zonal flow and to compute storm tracks. Our results show that the YD cooling in Europe was present with a strong and stable westerly circulation without blocking. This is in conflict with an earlier study suggesting frequent easterly winds over NW-Europe. In our experiments the sea-ice cover in the North Atlantic Ocean was the crucial factor forcing this specific YD circulation. Moreover, the jet stream over the North Atlantic was strengthened considerably, causing an enhanced cyclonic activity over the Eurasian continent. The YD winter circulation was different from the circulation found in most simulation studies on the Last Glacial Maximum, since no glacial anticyclones were present and no split of the jet stream occurred. Received: 1 November 1995 / Accepted: 29 May 1996  相似文献   

6.
A standard principal component analysis has been performed over the Mediterranean and over the larger European region on monthly precipitation anomalies for the winters between 1979 and 1995. The main centres of action of the associated EOFs are very similar for the two regions and the two sets of PCs are highly correlated with each other. Focusing on the Mediterranean region, the same analysis has been performed using 500?hPa geopotential height monthly anomalies taken from the operational NCEP analysis. Comparing the two sets of PCs associated with upper-air and surface data, a strong correlation has been found suggesting the presence of a two-way link between regional precipitation patterns and large-scale circulation anomalies. For both fields, the largest fraction of variance is explained by the North Atlantic Oscillation, while smaller but still substantial fractions are explained by other known patterns of large-scale variability such as the Eastern Atlantic pattern and the Euro-Atlantic blocking. No detectable connection has been found between Mediterranean precipitation patterns and El Niño SST anomalies during winter. With respect to temporal variability, significant trends have been found over most European areas during the winters considered. The associated pattern is characterised by a substantial increase of precipitation over western Scandinavia and a general decrease over southern Europe. This result is confirmed by analysing data from stations located in northern Italy.  相似文献   

7.
利用NCEP/DOE再分析资料,通过EOF分解、合成分析和线性回归等多种统计学方法,对年际时间尺度上冬季中东副热带西风急流(Middle East subtropical westerly Jet stream,MEJ)中心位置的变化进行研究,分析了MEJ中心位置的年际变化与大气环流的联系,找到了与MEJ中心位置相联系...  相似文献   

8.
春季欧亚积雪异常影响中国夏季降水的数值试验   总被引:7,自引:0,他引:7       下载免费PDF全文
 利用NCAR的新一代GCM CAM3.1版本模式,研究了欧亚大陆春季积雪异常对北半球大气环流和中国夏季降水的影响。结果表明,春季积雪异常通过改变其后夏季的土壤湿度和温度分布,造成对流层厚度场的异常,激发一个从欧洲西部到东亚的500 hPa高度场异常波列。我国南、北方处于符号相反的高度场异常区,同时降水也呈现南北相异的态势,这表明春季欧亚积雪异常是影响我国夏季降水分布的一个重要因子。  相似文献   

9.
Portions of the southern and southeastern United States, primarily Mississippi, Alabama, and Georgia, have experienced century-long (1895–2007) downward air temperature trends that occur in all seasons. Superimposed on them are shifts in mean temperatures on decadal scales characterized by alternating warm (1930s–1940s, 1990s) and cold (1900s; 1960s–1970s) regimes. Regional atmospheric circulation and SST teleconnection indices, station-based cloud cover and soil moisture (Palmer drought severity index) data are used in stepwise multiple linear regression models. These models identify predictors linked to observed winter, summer, and annual Southeastern air temperature variability, the observed variance (r2) they explain, and the resulting prediction and residual time series. Long-term variations and trends in tropical Pacific sea temperatures, cloud cover, soil moisture and the North Atlantic and Arctic oscillations account for much of the air temperature downtrends. Soil moisture and cloud cover are the primary predictors of 59.6 % of the observed summer temperature variance. While the teleconnections, cloud cover and moisture data account for some of the annual and summer Southeastern cooling trend, large significant downward trending residuals remain in winter and summer. Comparison is made to the northeastern United States where large twentieth century upward air temperature trends are driven by cloud cover increases and Atlantic Multidecadal Oscillation (AMO) variability. Differences between the Northeastern warming and the Southeastern cooling trends in summer are attributable in part to the differing roles of cloud cover, soil moisture, the Arctic Oscillation and the AMO on air temperatures of the 2 regions.  相似文献   

10.
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.  相似文献   

11.
Circulation patterns favourable for rapid snowmelt in the Polish-German lowlands are described in the study. Composite maps of the SLP and 500 hPa geopotential heights means and composite anomaly maps, constructed for the days with the decrease in snow cover depth of ≥5 cm/day, show deeper than usual low-pressure systems over the northern Atlantic and slightly higher than usual pressure over the Mediterranean. Such pressure patterns corresponds to the positive NAO phase with large pressure gradients, which intensify west and south-west air flows over Central Europe. Warm and humid air masses from the west and south-west contribute to substantial daily temperature increases and, frequently, to higher-than-usual precipitation, which speeds up ablation.  相似文献   

12.
The spatial and temporal pattern of the link between the winter precipitation variability and variations in the North Atlantic sea surface temperature, the Arctic sea ice concentration, and 500 hPa geopotential height in the Northern Hemisphere is analyzed for the period of 1952-2012. The analysis reveals two principal modes of covariability in the analyzed characteristics. The first mode which explains the most part of covariability, is related to the impact of the North Atlantic Oscillation. The second mode indicates the significant contribution of the Atlantic Multidecadal Oscillation associated with winter precipitation anomalies of the same sign in Europe with the maxima on the East European Plain and in the Balkan region during the positive phase of AMO.  相似文献   

13.
Occurrence of winter air temperature extremes in Central Spitsbergen   总被引:1,自引:1,他引:0  
The occurrence of daily air temperature extremes in winter in Central Spitsbergen in the period 1975–2008 was analysed. The mean winter temperature was found to be increasing by approximately 1.65°C per decade. Negative extremes were becoming less frequent, decreasing at a rate of approximately 5 days per decade, whereas the frequency of positive extremes showed a small (2 days per decade) but insignificant positive trend. Furthermore, circulation patterns responsible for positive and negative temperature extremes were analysed. Composite maps of the sea level pressure (SLP) and 500-hPa geopotential heights (z500 hPa) means and anomalies were constructed for the days with positive and negative extremes. Circulation patterns causing extremely warm winter days are characterised by a cyclonic centre or a low pressure trough over the Fram Strait. Cyclones located west of Spitsbergen with a warm sector over the archipelago bring warm air masses from the southern quadrant. On extremely cold days, the cyclone centres are usually located over the Barents Sea. This SLP pattern implies airflow from the north and northeast that brings cold Arctic air to the North Atlantic. Another factor in the occurrence of the temperature extremes in Central Spitsbergen is the sea-ice cover. Negative temperature extremes usually occur together with a high concentration of sea ice, particularly in the middle and end of winter.  相似文献   

14.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

15.
我国南方盛夏气温主模态特征及其与海温异常的联系   总被引:1,自引:0,他引:1  
袁媛  丁婷  高辉  李维京 《大气科学》2018,42(6):1245-1262
利用NCEP/NCAR大气环流资料、HadISST海温数据以及中国160站气温数据等,通过EOF分解、线性相关等统计方法,分析了我国南方盛夏气温异常的主导模态及其所对应的关键环流系统和可能的海洋外强迫信号。结果表明:我国南方盛夏气温偏高有两种不同的分布模态,一是以江淮地区为中心的江淮型高温,二是以江南和华南为中心的江南型高温,导致这两种高温型发生的环流影响系统和海温外强迫因子均有显著差异。影响江淮型高温的关键环流系统是高低空正压结构的高度场正距平和偏弱的东亚副热带西风急流。而影响这两个关键环流系统的海洋外强迫因子包括热带印度洋至东太平洋的"-+-"海温异常分布型及北大西洋中纬度的暖海温异常。2016年盛夏江淮型高温的大气环流和海温异常均表现出典型江淮型高温年的特征,更好的证明了统计分析的结论。而江南型高温的关键环流系统主要是加强西伸的西太平洋副热带高压。其海洋外强迫因子包括前冬赤道中东太平洋的暖海温异常和春季-盛夏热带印度洋全区一致型暖海温异常,其中热带印度洋海温的影响更为持续和显著。  相似文献   

16.
Changes and variability in seasonal average mean and monthly mean winter (DJF) air temperature series at 70 stations of Turkey and the circulation types at 500-hPa geopotential height level were investigated to explain atmospheric controls of temperature variations during the extreme (weak and strong) phases and normal (negative and positive) phases of the North Atlantic Oscillation (i.e., Ponta Delgada–Reykjavik and the Gibraltar–Reykjavik) indices. During the positive phases of the North Atlantic Oscillation indices (NAOIs), northeasterly circulation increased, and thus spatially coherent and significant cold signals dominate over the majority of Turkey. This pattern is closely linked to anomalously low 500-hPa heights over the region of the Icelandic Low, and anomalously high geopotential heights over the regions of the Azores High, the western Mediterranean basin and the Europe, in general including the Balkans and northwest Turkey. Contrarily, during the negative phases of the NAOIs, prevailing westerly winds that originate from the subtropical northeast Atlantic increase, and thus spatially coherent and significant warm signals over the Anatolian peninsula appear. This pattern is closely linked to the increased cyclonic activity and associated increased westerly and southwesterly circulation causing warm maritime air advection over the Mediterranean basin toward Turkey.  相似文献   

17.
Main modes of variability of the Antarctic tropospheric circulation (500 hPa geopotential height) and precipitation are identified through their empirical orthogonal functions (EOF). This is done by combining various sources of information, including meteorological analyses and forecasts (NCEP and ECMWF), atmospheric general circulation model (LMDZ) simulations, and satellite data (GPCP). Unlike previous similar work on circulation variability, the mode analyses are restricted to the Antarctic region. The main modes that relate the Antarctic region to the mid and tropical latitudes, e.g. in association with ENSO, are nonetheless clearly identified and thus robust. The contribution of the sea-surface or of the circumpolar Antarctic atmospheric dynamics to the occurrence and to the chronology of these modes is evaluated through various atmospheric model simulations. EOF analyses results are somewhat less stable, across the various datasets, and more noisy for precipitation than for circulation. Yet, through moisture advection considerations, the two most significant precipitation modes can be well related to the three main modes of circulation variability. The signatures of both the Southern Oscillation Index (SOI) and the Antarctic Oscillation Index (AOI) are found in one same precipitation mode, suggesting that they have a substantially common spatial structure. In addition, the relative strength of the signature of the AOI and SOI appears to change in time. In particular, the signature of the SOI was weak in the 1980s precipitations, but turned very strong in the 1990s. Common spatial patterns and variable strength in time may explain why hints of an ENSO signature in Antarctic precipitation have been reported but not unequivocally demonstrated so far.  相似文献   

18.
The seasonal mean variability of the atmospheric circulation is affected by processes with time scales from less than seasonal to interannual or longer. Using monthly mean data from an ensemble of Atmospheric General Circulation Model (AGCM) realisations, the interannual variability of the seasonal mean is separated into intraseasonal, and slowly varying components. For the first time, using a recently developed method, the slowly varying component in multiple AGCM ensembles is further separated into internal and externally forced components. This is done for Southern Hemisphere 500?hPa geopotential height from five AGCMs in the CLIVAR International Climate of the Twentieth Century project for the summer and winter seasons. In both seasons, the intraseasonal and slow modes of variability are qualitatively well reproduced by the models when compared with reanalysis data, with a relative metric finding little overall difference between the models. The Southern Annular Mode (SAM) is by far the dominant mode of slowly varying internal atmospheric variability. Two slow-external modes of variability are related to El Ni?o-Southern Oscillation (ENSO) variability, and a third is the atmospheric response to trends in external forcing. An ENSO-SAM relationship is found in the model slow modes of variability, similar to that found by earlier studies using reanalysis data. There is a greater spread in the representation of model slow-external modes in winter than summer, particularly in the atmospheric response to external forcing trends. This may be attributable to weaker external forcing constraints on SH atmospheric circulation in winter.  相似文献   

19.
Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and vice versa.  相似文献   

20.
CMIP3气候模式对东亚冬季大气环流模拟能力的评估   总被引:1,自引:0,他引:1  
利用1960—1999年ECMWF月平均再分析资料(ERA40)和耦合模式比较计划(Phase 3 of the CoupledModel Intercomparison Project,简称CMIP3)21个气候耦合模式对20世纪气候模拟试验的模式结果,从气候态和年际变化两个方面,评估了CMIP3气候模式对东亚冬季大气环流的模拟能力。结果表明:(1)模式对东亚地区冬季海平面气压、850 hPa纬向风、经向风和500 hPa高度场气候态的模拟存在不同程度的偏差,但均能较好模拟出上述要素气候态的空间分布特征。总体而言,模式对500 hPa高度场气候态的模拟效果最好,而对850 hPa经向风的模拟效果较差。(2)模式基本上能抓住近40年来东亚地区冬季500 hPa高度场的主要变化特征,但基本上不能模拟出冬季海平面气压、850 hPa纬向风和经向风的变化特征。此外,模式对阿留申低压、蒙古高压和东亚冬季风强度的变化特征几乎没有模拟能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号