首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to test the sensitivity of the transitional phase of the 2006 West African monsoon (WAM) onset to different mechanisms, weather research and forecasting (WRF) model simulations have been carried out addressing the role of the Saharan heat low (SHL) and its sensitivity to the albedo field and to the northern Africa orography, and the role of the sea surface temperature (SST) in the eastern tropical Atlantic and Mediterranean. Lowering albedo over the desert region induces a northward location of the inter-tropical convergence zone (ITCZ), while removing mountains in North Africa reduces rainfall over West Africa. Shifting SST forward by 15?days leads to a northward location of the ITCZ before the WAM onset. However none of these factors modifies the timing of the WAM onset in 2006. The transitional phase of the 2006 WAM onset has been examined in more detail. The enhancement of SHL intensity, combined with the development of the oceanic cold tongue in the Guinea gulf, leads to low-level moisture flux divergence in the ITCZ reducing rainfall and increasing low-level humidity over the Sahel. However, weakening of convection can be clearly attributed to dry-air intrusions in mid-levels, originating from the subtropical westerly jet and associated with Rossby wave pattern over North Africa. Sensitivity tests on the synoptic scale forcing outside of the WRF model domain confirm the dominating role of large-scale dynamics to control the transitional phase of the WAM onset and its timing. However it is shown that the regional factors can modulate this larger scale forcing.  相似文献   

2.
Research on the Asian-Pacific monsoon has a long history. This paper starts by summarizing field experiments investigating the Asian-Pacific monsoon. Since the 1960s, a number of international and regional monsoon projects and field experiments have been carried out, and substantial progress regarding research on the Asian-Pacific monsoon has been made. Second, the onset and the seasonal march of the Asian summer monsoon and the annual cycle of active and break periods of the monsoon, which are characterized by precipitation maxima and minima, are studied. Since the inter-tropical convergence zone (ITCZ or TCZ) is the dominating weather system and is the major birthplace of typhoons and tropical convective systems, the monsoonal rainfall and ITCZ are analyzed after the onset of the Asian monsoon. Finally, because the ITCZ has a close relationship with tropical convective systems and rainfall events in monsoon regions, analyses of the developments of deep convection and rainfall events are briefly introduced.  相似文献   

3.
India’s annual weather cycle consists mainly of wet and dry periods with monsoonal rains being one of the significant wet periods that shows strong spatiotemporal variability. This study includes the climatological characteristics, fluctuation features, and periodic cycles of annual, seasonal, and monthly rainfall of seven river basins across the eastern Gangetic Plain (EGP) using the longest possible instrumental area-averaged monthly rainfall series (1829–2012). Understanding the relationships between these parameters and global tropospheric temperature changes and El Niño and La Niña climatic signals is also attempted.

Climatologically, mean annual rainfall in the EGP varies from 1070.5?mm in the Tons River basin to 1508.6?mm in the Subarnarekha River basin. The highest rainfall in the EGP occurs during monsoon (1188?mm). The annual rainfall in all river basins and monsoon rainfall in four river basins is normally distributed. Annual and monsoonal rainfall in the Brahmani and Son River basins show a significant decreasing long-term trend. Over the last 20 years, annual rainfall in all river basins and monsoonal rainfall in five river basins show a decreasing trend. The power spectra for all rainfall series are characterized by consistent significant wavelength peaks at 3–5 years, 10–20 years, 40 years, and more than 80 years. Short-term fluctuations with a period less than 10 years is the major contributor to total variance in annual and/or monsoon rainfall (77.6%), followed by decadal variations with a period of 10–30 years (13.1%) and a long-term trend with a period greater than 30 years (9.3%).Temperature and thickness gradients from the Tibet–Himalaya–Karakoram–Hindu Kush highlands to eight strong highs show a significant correlation with rainfall during the onset and withdrawal phases of summer monsoon in the EGP.  相似文献   

4.
The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S?C32°N 30°W?C50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land?Catmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.  相似文献   

5.
The date of onset of the southwest monsoon in western India is critical for farmers as it influences the timing of crop plantation and the duration of the summer rainy season. Identifying long-term variability in the date of monsoon onset is difficult, however, as onset dates derived from the reanalysis of instrumental rainfall data are only available for the region from 1879. This study uses documentary evidence and newly uncovered instrumental data to reconstruct annual monsoon onset dates for western India for the period 1781–1878, extending the existing record by 97 years. The mean date of monsoon onset over the Mumbai (Bombay) area during the reconstruction period was 10 June with a standard deviation of 6.9 days. This is similar to the mean and standard deviation of the date of monsoon onset derived from instrumental data for the twentieth century. The earliest identified onset date was 23 May (in 1802 and 1839) and the latest 22 June (in 1825). The longer-term perspective provided by this study suggests that the climatic regime that governs monsoon advance over western India did not change substantially from 1781 to 1955. Monsoon onset over Mumbai has occurred at a generally later date since this time. Our results indicate that this change is unprecedented during the last 230 years. Following a discussion of the results, the nature of the relationship between the date of monsoon onset and the El Niño-Southern Oscillation is discussed. This relationship is shown to have been stable since 1781.  相似文献   

6.
Summary Annual cycle and inter-seasonal persistence of surface-atmosphere water and heat fluxes are analyzed at a 5-day time step over the West African Monsoon (WAM) through observational precipitation estimates (CMAP), model datasets (NCEP/DOE level 2 reanalyses) and a Soil Water Index (SWI) from the ERS scatterometer. Coherent fluctuations (30–90 days) distinct from supra-synoptic variability (10–25 day periods) are first detected in the WAM precipitation and heat fluxes over the period 1979–2001. During all the northward excursion of the WAM rain band, a succession of four active phases (abrupt rainfall increases) occurs. They are centered in the first days of March, mid-April, the second half of May and from the last week of June to mid-July (the Sahelian onset). A simple statistical approach shows that the Spring to Summer installation of the monsoon tends to be sensitive to these short periods. Other analyses suggest the existence of lagged relationship between rainfall amounts registered in successive Fall, Spring (active periods) and Summer (top of the rainy season) implying land surface conditions. The spatial extension of the generated soil moisture anomalies reaches one maximum in March, mainly at the Guinean latitudes and over the Sahelian belt where the signal can persist until the next monsoon onset. Typically after abnormal wet conditions in September–October two signals are observed: (1) more marked fluctuations in Spring with less (more) Sahelian rainfall in May (June and after) at the Sahelian-Sudanian latitudes; (2) wetter rainy seasons along the Guinean coast (in Spring and Summer with an advance in the mean date of the ‘little dry season’). The reverse arises after abnormal dry conditions in autumn.  相似文献   

7.
近50年来中国夏季降水及水汽输送特征研究   总被引:15,自引:3,他引:12  
利用1951-2006年中国448站夏季降水资料、NCEP/NCAR VersionⅠ的再分析资料,研究了近50年来中国夏季降水年代际变化特征及其分区,并从季风性水汽输送的变化角度出发,讨论了影响中国一些主要地区降水变化的可能机制.研究发现:(1)从总体上来说,自1951年至今,中国夏季降水存在3个突变时段,即1956-1960年,1980年前后以及1993年以后.且90°E以东突变后的主要变化特征都是多雨区由北向南传播,而90°E以西则是多雨区由南向北传播;2)近56年来就110°E以东的中国东部夏季降水而言,1980年以后多雨区由华北南移到长江中下游,又于1993年以后由长江中下游继续南移至华南;3)中国东部各地区降水和850 hpa风场、整层水汽输送场的相关分布一致表明,中国110°E以东各降水区以南为来自偏东偏南的季风性异常水汽输送,而以北为来自偏北风和相应的异常水汽输送,两者在降水区汇合造成风和水汽输送异常辐合.因而,西太平洋副热带高压南侧的东南季风及其异常水汽输送、北方冷槽的偏北风及其异常水汽输送是中国东部夏季降水异常的主要成员,这和一般认为的这些地区降水异常来自孟加拉湾的季风性异常水汽输送的观点不同,需要作进一步研究.总之,对于中国东部旱涝的形成,应该重点注意来自西北太平洋副热带高压西侧的直接或间接经南海到达的异常四南季风性水汽输送.  相似文献   

8.
IPCC global coupled model simulations of the South America monsoon system   总被引:1,自引:1,他引:0  
This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979–2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981–2000) and in a future scenario of global change (A1B) (2081–2100). It is shown that most IPCC models misrepresent the inter-tropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MIROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS’s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.  相似文献   

9.
Indian monsoon is the most prominent of the world’s monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran’s synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960–2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon’s withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall’s precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran’s plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian coastal provinces, which has a different behavior from the overall response of Iran’s climate to the late withdrawal of monsoon. In the phase of early monsoon withdrawal, the subtropical jet is located at the 200 hPa level in 32.5° north latitude; compared with the late withdrawal date, it shows a 2° southward movement. Additionally, the 500 hPa trough is also located in the Eastern Mediterranean, and the MSL pressure anomaly is between ? 4 to ? 7 hPa. The Mediterranean trough in the late withdrawal phase is located in its central zones. It seems that the lack of significant correlation between late withdrawal date of Indian monsoon and late fall’s precipitation onset in the central region of Iran depends on three reasons:1. Lack of adequate weather stations in central region of Iran.2. Precipitation standard deviations over arid and warm regions are high.3. Central flat region of Iran without any source of humidity is located to the lee side of Zagros mountain range. So intensification or development of frontal systems is almost prohibited over there.  相似文献   

10.
The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler?CHendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly patterns were very similar to that during Phase 1 and 2 except for above normal convective anomalies over equatorial Indian Ocean. A general decrease in the rainfall was also observed over most parts of the country. The associated dry conditions extended up to northwest Pacific. Thus the impact of the MJO on the monsoon was not limited to the Indian region. The impact was rather felt over larger spatial scale extending up to Pacific. This study also revealed that the onset of break and active events over India and the duration of these events are strongly related to the Phase and strength of the MJO. The break events were relatively better associated with the strong MJO Phases than the active events. About 83% of the break events were found to be set in during the Phases 7, 8, 1 and 2 of MJO with maximum during Phase 1 (40%). On the other hand, about 70% of the active events were set in during the MJO Phases of 3 to 6 with maximum during Phase 4 (21%). The results of this study indicate an opportunity for using the real time information and skillful prediction of MJO Phases for the prediction of break and active conditions which are very crucial for agriculture decisions.  相似文献   

11.

Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002–2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region.

  相似文献   

12.
The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space–time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.  相似文献   

13.
The Weather Regional Forecast (WRF) model is used in this study to downscale low-resolution data over West Africa. First, the performance of the regional model is estimated through contemporary period experiments (1981?C1990) forced by ARPEGE-CLIMAT GCM output (ARPEGE) and ERA-40 re-analyses. Key features of the West African monsoon circulation are reasonably well represented. WRF atmospheric dynamics and summer rainfall compare better to observations than ARPEGE forcing data. WRF simulated moisture transport over West Africa is also consistent in both structure and variability with re-analyses, emphasizing the substantial role played by the West African Monsoon (WAM) and African Easterly Jet (AEJ) flows. The statistical significance of potential climate changes for the A2 scenario between 2032 and 2041 is enhanced in the downscaling from ARPEGE by the regional experiments, with substantial rainfall increases over the Guinea Gulf and eastern Sahel. Future scenario WRF simulations are characterized by higher temperatures over the eastern Tropical Atlantic suggesting more evaporation available locally. This leads to increased moisture advection towards eastern regions of the Guinea Gulf where rainfall is enhanced through a strengthened WAM flow, supporting surface moisture convergence over West Africa. Warmer conditions over both the Mediterranean region and northeastern Sahel could also participate in enhancing moisture transport within the AEJ. The strengthening of the thermal gradient between the Sahara and Guinean regions, particularly pronounced north of 10°N, would support an intensification of the AEJ northwards, given the dependance of the jet to the position/intensity of the meridional gradient. In turn, mid-tropospheric moisture divergence tends to be favored within the AEJ region supporting southwards deflection of moist air and contributing to deep moist convection over the Sahel where late summer rainfall regimes are sustained in the context of the A2 scenario regional projections. In conclusion, WRF proved to be a valuable and efficient tool to help downscaling GCM projections over West Africa, and thus assessing issues such as water resources vulnerability locally.  相似文献   

14.
The performance of the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) in simulating the West African monsoon (WAM) is investigated. We focus on performance for monsoon onset timing and for rainfall totals over the June–July–August (JJA) season and on the model’s representation of the underlying dynamical processes. Experiments are driven by the ERA-Interim reanalysis and follow the CORDEX experimental protocol. Simulations with the HadGEM3 global model, which shares a common physical formulation with HadGEM3-RA, are used to gain insight into the causes of HadGEM3-RA simulation errors. It is found that HadGEM3-RA simulations of monsoon onset timing are realistic, with an error in mean onset date of two pentads. However, the model has a dry bias over the Sahel during JJA of 15–20 %. Analysis suggests that this is related to errors in the positioning of the Saharan heat low, which is too far south in HadGEM3-RA and associated with an insufficient northward reach of the south-westerly low-level monsoon flow and weaker moisture convergence over the Sahel. Despite these biases HadGEM3-RA’s representation of the general rainfall distribution during the WAM appears superior to that of ERA-Interim when using Global Precipitation Climatology Project or Tropical Rain Measurement Mission data as reference. This suggests that the associated dynamical features seen in HadGEM3-RA can complement the physical picture available from ERA-Interim. This approach is supported by the fact that the global HadGEM3 model generates realistic simulations of the WAM without the benefit of pseudo-observational forcing at the lateral boundaries; suggesting that the physical formulation shared with HadGEM3-RA, is able to represent the driving processes. HadGEM3-RA simulations confirm previous findings that the main rainfall peak near 10°N during June–August is maintained by a region of mid-tropospheric ascent located, latitudinally, between the cores of the African Easterly Jet and Tropical Easterly Jet that intensifies around the time of onset. This region of ascent is weaker and located further south near 5°N in the driving ERA-Interim reanalysis, for reasons that may be related to the coarser resolution or the physics of the underlying model, and this is consistent with a less realistic latitudinal rainfall profile than found in the HadGEM3-RA simulations.  相似文献   

15.
The characteristics of moisture transport and budget of widespread heavy rain and local heavy rain events in Northeast China are studied using the NCEP--NCAR reanalysis 6-hourly and daily data and daily precipitation data of 200 stations in Northeast China from 1961--2005. The results demonstrate that during periods with widespread heavy rain in Northeast China, the Asian monsoon is very active and the monsoonal northward moisture transport is strengthened significantly. The widespread heavy rainfall obtains enhanced water vapor supply from large regions where the water vapor mainly originates from the Asian monsoon areas, which include the East Asian subtropical monsoon area, the South China Sea, and the southeast and southwest tropical monsoon regions. There are several branches of monsoonal moisture current converging on East China and its coastal areas, where they are strengthened and then continue northward into Northeast China. Thus, the enhanced northward monsoonal moisture transport is the key to the widespread heavy rain in Northeast China. In contrast, local heavy rainfall in Northeast China derives water vapor from limited areas, transported by the westerlies. Local evaporation also plays an important role in the water vapor supply and local recycling process of moisture. In short, the widespread heavy rains of Northeast China are mainly caused by water vapor advection brought by the Asian monsoon, whereas local heavy rainfall is mainly caused by the convergence of the westerly wind field.  相似文献   

16.
The spatio-temporal variability of boreal summer monsoon onset over the Philippines is studied through the analysis of daily rainfall data across a network of 76 gauges for the period 1977 to 2004 and the pentad Merged Analysis of Precipitation from the US Climate Prediction Center from 1979 to 2006. The onset date is defined using a local agronomic definition, namely the first wet day of a 5-day period receiving at least 40 mm without any 15-day dry spell receiving <5 mm in the 30 days following the start of that period. The onset is found to occur rather abruptly across the western Philippines around mid-May on average and is associated with the set-up of a “classical” monsoonal circulation with low-level easterlies subsequently veering to southerly, and then southwesterly. The onset manifests itself merely as a seasonal increase of rainfall over the eastern Philippines, where rainfall occurs throughout most of the year. Interannual variability of the onset date is shown to consist of a spatially coherent large-scale component, rather similar over the western and eastern Philippines, with a moderate to high amount of local-scale (i.e. station scale) noise. In consequence, the large-scale signal can be easily retrieved from any sample of at least 5–6 stations across the network although the local-scale coherence and fingerprint of the large-scale signal of the onset date are found to be stronger over the central Philippines, roughly from Southern Luzon to Northern Mindanao. The seasonal predictability of local onset is analyzed through a cross-validated canonical correlation analysis using tropical Pacific and Indian Ocean sea surface temperature in March and the 850 hPa May wind field from dynamical forecast models as predictors. The regional-scale onset, defined as the average of standardized local-scale anomalies in onset date, shows good predictive skill (r ≈ 0.8). Moreover, most of the stations show weak to moderate skill (median skill = 0.28–0.43 depending on the scheme) with spatial averaging across stations typically increasing skill to >0.6.  相似文献   

17.
By using the ECMWF reanalysis daily data and daily precipitation data of 80 stations in Northeast China from 1961 to 2002, the impacts of moisture transport of East Asian summer monsoon on the summer precipitation anomaly in Northeast China, and the relationship between the variation of moisture budget and the establishment of East Asian summer monsoon in this region are studied. The results demonstrate that the moisture of summer precipitation in Northeast China mainly originates from subtropical, South China Sea, and South Asia monsoon areas. East China and its near coastal area are the convergent region of the monsoonal moisture currents and the transfer station for the currents continually moving northward. The monsoonal moisture transport, as an important link or bridge, connects the interaction between middle and low latitude systems. In summer half year, there is a moisture sink in Northeast China where the moisture influx is greater than outflux. The advance transport and accumulation of moisture are of special importance to pentad time scale summer precipitation. The onset, retreat, and intensity change of the monsoonal rainy season over Northeast China are mainly signified by the moisture input condition along the southern border of this area. The establishment of East Asian summer monsoon in this area ranges from about 10 July to 20 August and the onset in the west is earlier than that in the east. The latitude that the monsoon can reach is gradually northward from west to east, reaching 50°N within longitude 120°-135°E. In summer, the difference of air mass transport between summers with high and low rainfall mainly lies in whether more air masses originating from lower latitudes move northward through East China and its coastal areas, consequently transporting large amounts of hot and humid air into Northeast China.  相似文献   

18.
Earlier studies show a strong negative relationship between Eurasian snow cover/depth and Indian summer monsoon rainfall (ISMR). In such studies, both the parameters snow and rainfall are seasonally averaged over large areas. Indian summer monsoon has its own characteristics of evolution such as onset, active, break and withdrawal phases which have been studied extensively. However, the evolution of Eurasian snow is yet to be examined. Further, it is interesting to explore the characteristics of evolution of snow over the different regions of Eurasia and their relationship with the evolution characteristics of summer monsoon. In this paper, a detailed examination has been done on the starting and the ending dates of snowfall over different regions of Eurasia and attempts have been made to explore any relationship with onset of ISMR. It is observed that the regions where snowfall started early, it also ended late. Further, in those regions maximum snow depth also occurred late. In some years, more snowfall in East Eurasia is followed by less snowfall in West Eurasia. Also snow depths particularly in the northernmost and southwest regions of East Eurasia are opposite in phase. The results of this study indicate a weak relationship between snow starting dates in Eurasia and summer monsoon onset dates in the Kerala coast. However, the relationship between the northernmost Eurasian snow depth and the summer monsoon precipitation in the Peninsular India is significant.  相似文献   

19.
Summary The interannual and decadal scale variability in the North Atlantic Oscillation (NAO) and its relationship with Indian Summer monsoon rainfall has been investigated using 108 years (1881–1988) of data. The analysis is carried out for two homogeneous regions in India, (Peninsular India and Northwest India) and the whole of India. The analysis reveals that the NAO of the preceding year in January has a statistically significant inverse relationship with the summer monsoon rainfall for the whole of India and Peninsular India, but not with the rainfall of Northwest India. The decadal scale analysis reveals that the NAO during winter (December–January–February) and spring (March–April–May) has a statistically significant inverse relationship with the summer monsoon rainfall of Northwest India, Peninsular India and the whole of India. The highest correlation is observed with the winter NAO. The NAO and Northwest India rainfall relationship is stronger than that for the Peninsular and whole of India rainfall on climatological and sub-climatological scales.Trend analysis of summer monsoon rainfall over the three regions has also been carried out. From the early 1930s the Peninsular India and whole of India rainfall show a significant decreasing trend (1% level) whereas the Northwest India rainfall shows an increasing trend from 1896 onwards.Interestingly, the NAO on both climatological and subclimatological scales during winter, reveals periods of trends very similar to that of Northwest Indian summer monsoon rainfall but with opposite phases.The decadal scale variability in ridge position at 500 hPa over India in April at 75° E (an important parameter used for the long-range forecast of monsoon) and NAO is also investigated.With 4 Figures  相似文献   

20.
This study defines the concepts of wind onset and wind withdrawal to describe the abrupt seasonal variations of wind direction and circulation of the Asian monsoon. The patterns of wind onset and withdrawal show that the earliest wind onset in the tropical monsoon regions is found over equator around 70°–100°E and the southernmost South China Sea (SCS) and western Kalimantan, and the wind withdrawal shows a southward progression in tropics compared to the wind onset. A notable temporal boundary is found around 25°N in the subtropical western North Pacific (WNP), which may be related to the northward advance and southward retreat of the western Pacific subtropical high. The angle amplitudes of wind vectors in wind onset and withdrawal have distinct regional differences in Asian monsoon regions. Since the process of monsoon onset (withdrawal) may include several onsets of different variables without simultaneity, the relationships of the wind onset and withdrawal with the abrupt change of other variables (e.g. reversal of zonal wind, reversal of meridional wind, outgoing longwave radiation (OLR), precipitation) are investigated. The results indicate that the temporal discrepancies in different monsoon regions confirmed the asynchronous onsets. It also implies that the wind onset might be a good omen for monsoon precipitation in most regions since it is slightly earlier than rainy season onset. Seven Atmospheric Model Intercomparison Project (AMIP) models from Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are validated against observations mentioned above. Generally, the simulations of the multi-model ensemble mean are better than any individual model results. And the simulations of wind withdrawal are better than those of wind onset. For wind onset, IAP-FGOALS-1.0g, MIROC3.2 (medres) and MPI-ECHAM5 simulate reasonably well. For wind retreat, most models can capture the behaviors in tropics. However, there are still some discrepancies in a few models to simulate the dates of sudden change of monsoon wind direction. Moreover, most of models cannot reproduce the onset and withdrawal of both rainfall and OLR. The relationship between these discrepancies and the shortcomings of precipitation simulation is crucial for further investigating in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号