首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil heat flux is important for surface energy balance (SEB), and inaccurate estimation of soil heat flux often leads to surface energy imbalance. In this paper, by using observations of surface radiation fluxes and soil temperature gradients at a semi-arid grassland in Xilingguole, Inner Mongolia, China from June to September 2008, the characters of the SEB for the semi-arid grassland were analyzed. Firstly, monthly averaged diurnal variations of SEB components were revealed. A 30-min forward phase displacement of soil heat flux (G) observed by a fluxplate at the depth of 5-cm below the soil surface was conducted and its effect on the SEB was studied. Secondly, the surface soil heat flux (G s) was computed by using harmonic analysis and the effect of the soil heat storage between the surface and the fluxplate on the SEB was examined. The results show that with the 30-min forward phase displacement of observed G, the slope of the ordinary linear regression (OLR) of turbulent fluxes (H+LE) against available energy (R n-G) increased from 0.835 to 0.842, i.e., the closure ratio of SEB increased by 0.7%, yet energy imclosure of 15.8% still existed in the SEB. When G s, instead of G was used in the SEB equation, the slope of corresponding OLR of (H+LE) against (R n-G s) reached 0.979, thereby the imclosure ratio of SEB was reduced to only 2.1%.  相似文献   

2.
岳平  张强  牛生杰  成华  王西育 《气象学报》2012,70(1):136-143
土壤热通量在半干旱草原下垫面能量平衡研究中极为重要,土壤热通量估计不够准确是导致地表能量不平衡的一个重要原因。利用2008年6—9月锡林郭勒草原主生长期地表辐射、通量和土壤温度梯度观测资料,研究中纬度半干旱草原下垫面地表能量平衡特征。首先,在分析能量平衡各分量月平均日变化特征的基础上,通过对土壤热流量板观测的5 cm深度土壤热通量(G)的相位前移,研究了土壤热通量相位滞后对地表能量平衡产生的影响;其次,利用谐波分析方法,通过计算地表土壤热通量(Gs),分析了地表到热流量板之间的土壤热量储存对地表能量平衡的影响。结果表明:(1)将土壤热通量相位前移30 min,湍流通量与可利用能量(Rn-G)线性回归的斜率从0.835增加到0.842,地表能量闭合率提高了0.7%,但仍有15.8%的能量不闭合;(2)考虑了地表到热流量板之间的土壤热量储存之后,湍流通量与可利用能量之间的回归斜率达到0.979,能量不闭合程度仅为2.1%。  相似文献   

3.
4.
Surface energy balance closure has been examined using eddy covariance measurements and other observations at one industrial and three agricultural sites near the Nakdong River during daytime. Energy balance closure was evaluated by calculating the long-term averaged energy balance ratio (EBR), the ratio of turbulent energy fluxes to available energy, and the statistical regression of turbulent energy fluxes against available energy using half-hourly data. The EBR of all sites ranges from 0.46 to 0.83 while the coefficient of determination (R 2) ranges from 0.37 to 0.77. The energy balance closure was relatively poor compared to homogeneous sites, indicating the influence of surface heterogeneity. Unmeasured heat storage terms also seem to play a role in the surface energy budget at the industrial and irrigated sites. The energy balance closure was better in conditions of high wind speed, low downward short wave radiation, and high friction velocity, which suggests the role of heat storage term and surface heterogeneity in surface energy balance at these sites. Spectrum analysis shows a sharp roll-off at the low frequency in co-spectrum, which indicates that low-frequency motions do not significantly contribute to turbulent fluxes. Both the spectra and cospectra in unstable conditions show a broad peak indicating the influence of multiple sizes of large eddies over heterogeneous sites. Most of ogive curves for the kinematic latent and sensible heat fluxes reach an asymptote within 30 minutes regardless of the EBR value, indicating that low frequency motion is not a main factor for energy imbalance. However, stationary eddies due to landscape heterogeneity still remains as a possible cause for energy imbalance.  相似文献   

5.
The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany; Ritten/Renon, Italy; Wetzstein, Germany; Norunda, Sweden). Existing data of net radiation were used as well as storage change rates calculated from temperature and humidity measurements to finally calculate the AE of all forest sites with uncertainty bounds. Data of the advection experiments MORE II (Tharandt) and ADVEX (Renon, Wetzstein, Norunda) served as the main basis. On-site data for referencing and cross-checking of the available energy were limited. Applied cross checks for net radiation (modelling, referencing to nearby stations and ratio of net radiation to global radiation) did not reveal relevant uncertainties. Heat storage of sensible heat J H, latent heat J E, heat storage of biomass J veg and heat storage due to photosynthesis J C were of minor importance during day but of some importance during night, where J veg turned out to be the most important one. Comparisons of calculated storage terms (J E, J H) at different towers of one site showed good agreement indicating that storage change calculated at a single point is representative for the whole canopy at sites with moderate heterogeneity. The uncertainty in AE was assessed on the basis of literature values and the results of the applied cross checks for net radiation. The absolute mean uncertainty of AE was estimated to be between 41 and 52 W m?2 (10–11 W m?2 for the sum of the storage terms J and soil heat flux G) during mid-day (approximately 12% of AE). At night, the absolute mean uncertainty of AE varied from 20 to about 30 W m?2 (approximately 6 W m?2 for J plus G) resulting in large relative uncertainties as AE itself is small. An inspection of the energy balance showed an improvement of closure when storage terms were included and that the imbalance cannot be attributed to the uncertainties in AE alone.  相似文献   

6.
利用2012年11月11日至2013年1月20日上海秋冬季涡动相关通量观测资料,对比分析地表能量平衡和CO2通量在不同天气条件下的日变化特征。结果表明:2012-2013年上海晴天和多云天气条件下,最大能量通量为储热项,其次为感热项;用于蒸发的潜热通量项最小,低于50 w·m-2。储热项日峰值出现在11时,出现时间早于净辐射通量,而在日落前转为负值。感热项日变化曲线并不以12时为中心呈对称分布,日落后感热项仍为明显正值。中午至日落时波文比值为3以上。感热通量受风向影响最大,在主导风向为西北风时,感热通量日峰值从其他风向的175 w·m-2左右减小至120 w·m-2左右。霾和云对短波辐射均表现为衰减作用,云的衰减作用明显大于霾。云使地表向上长波辐射和净长波辐射明显减少,而使大气逆辐射增加。晴天条件下,全天表现为CO2排放源,且日变化呈双峰型,两个峰值出现时间正好对应上下班高峰时段,傍晚峰值大于早上峰值。  相似文献   

7.
Surface energy balance measurements over a banana plantation in South China   总被引:1,自引:1,他引:1  
The land surface energy exchange depends highly on the surface properties. Little is known of the energy balance over a typical banana plantation of humid tropics. In this study, we examine the characteristics of surface energy exchange over a typical banana field in South China during the period of May 2010 to April 2011 by using the eddy covariance and micrometeorological tower. The results showed that the diurnal and seasonal variations in surface latent heat flux were larger compared with those over the nearby grassland. The dominant energy partitioning varies with season. The latent heat flux was the main consumer of net radiation in summer, whereas the sensible heat flux was the main consumer in winter. The increasing cloud coverage and rain appear to control the surface energy balance with the development of the monsoon. Due to increased afternoon convective cloud systems in the monsoon active period, downward shortwave radiation was dramatically diminished around 14:00?pm. The annual mean Bowen ratio was 0.69, which fell within the range of other vegetated surfaces. The observed surface energy components were not closed, and the ratio of turbulent fluxes to the available energy was about 77 % in October–January and about 85 % in the other months after considering soil heat and air heat storage.  相似文献   

8.
Energy balance components obtained over five grass-covered sloping surfaces near Manhattan, KS, using the Bowen ratio energy balance technique with the instruments mounted horizontally were compared with calculated values when the instruments were mounted parallel to the surfaces. Hourly values of the components changed when the instruments were parallel to the surfaces. The changes were larger at low solar angles (spring and fall) and on steeper slopes. An area average of daylight totals, assuming that all aspects were equally represented, changed only 0.1% on June 6 and 2.3% on October 11. The calculations, extended to steeper slopes, indicated small changes in the daylight totals for slopes of less than 10 deg.Supported in part by a grant from NASA NAG 5-901.  相似文献   

9.
Summary  We compared two one-dimensional simulation models for heat and water fluxes in the soil-snow-atmosphere system with respect to their mathematical formulations of the surface heat exchange and the snow pack evolution. They were chosen as examples of a simple one-layer snow model and a more detailed multiple-layer snow model (SNTHERM). The snow models were combined with the same one-dimensional model for the heat and water balance of the underlying soil (CoupModel). Data from an arable field in central Sweden (Marsta), covering two years (1997–1999) of soil temperature, snow depth and eddy-correlation measurements were successfully compared with the models. Conditions with a snow pack deeper or shallower than 10 cm and bare soil resulted in similar discrepancies. The simulated net radiation and sensible heat flux were in good agreement with that measured during snow-covered periods, except for situations with snowmelt when the downward sensible heat flux was overestimated by 10–20 Wm−2. The results showed that the uncertainties in parameter values were more important than the model formulation and that both models were useful in evaluating the limitations and uncertainties of the measurements. Received November 1, 1999 Revised April 20, 2000  相似文献   

10.
The paper deals with the role of the vertical flux of turbulent energy in the atmospheric boundary layer. The influence of the divergence of this flux on the vertical wind profile and on the eddy diffusivity is shown by theoretical considerations.  相似文献   

11.
Extrapolating energy fluxes between the ground surface and the atmospheric boundary layer from point-based measurements to spatially explicit landscape estimation is critical to understand and quantify the energy balance components and exchanges in the hydrosphere, atmosphere, and biosphere. This information is difficult to quantify and are often lacking. Using a Landsat image (acquired on 5 August 2004), the flux measurements from three eddy covariance flux towers (a 1987 burn, a 1999 burn, and an unburned control site) and a customized satellite-based surface energy balance model of Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC), we estimated net radiation, sensible heat flux (H), latent heat flux (LE), and soil heat flux (G) for the boreal Yukon River Basin of Interior Alaska. The model requires user selection of two extreme conditions present within the image area to calibrate and anchor the sensible flux output. One is the “hot” condition which refers to a bare soil condition with specified residual evaporation rates. Another one is the “cold” condition which refers to a fully transpiring vegetation such as full-cover agricultural crops. We selected one bare field as the “hot” condition while we explored three different scenarios for the “cold” pixel because of the absence of larger expanses of agricultural fields within the image area. For this application over boreal forest, selecting agricultural fields whose evapotranspiration was assumed to be 1.05 times the alfalfa-based reference evapotranspiration as the “cold” pixel could result in large errors. Selecting an unburned flux tower site as the “cold” pixel could achieve acceptable results, but uncertainties remain about the energy balance closure of the flux towers. We found that METRIC performs reasonably well in partitioning energy fluxes in a boreal landscape.  相似文献   

12.
13.
14.
A mass flux closure in a general circulation model (GCM) was developed in terms of the mean gradient Richardson number (GRN), which is defined as the ratio between the buoyancy and the shear-driven kinetic energy in the planetary boundary layer. The cloud resolving model (CRM) simulations using the tropical ocean and global atmosphere-coupled ocean–atmosphere response experiment forcing show that cloud-base mass flux is well correlated with the GRN. Using the CRM simulations, a mass flux closure function is formulated as an exponential function of the GRN and it is implemented in the Arakawa–Schubert convective scheme. The GCM simulations with the new mass flux closure are compared to those of the GCM with the conventional mass flux closure based on convective available potential energy. Because of the exponential function, the new closure permits convective precipitation only when the GRN has a sufficiently large value. When the GRN has a relatively small value, the convection is suppressed while the convective instability is released by large-scale precipitation. As a result, the ratio of convective precipitation to total precipitation is reduced and there is an increase in the frequency of heavy precipitation, more similar to the observations. The new closure also improves the diurnal cycle of precipitation due to a time delay of the large GRN with respect to convective instability.  相似文献   

15.
16.
A yaw sphere has been designed that measures a quantity that is proportional to the vertical heat flux. The method is described, and some comparisons are given with measurements made with a three-dimensional pressure-sphere anemometer, in combination with a fast-response thermometer.  相似文献   

17.
Eddy flux measurements over the ocean and related transfer coefficients   总被引:1,自引:0,他引:1  
Eddy correlation measurements of vertical turbulent fluxes made during AMTEX 1975 are used to assess the reliability of flux prediction from established bulk transfer relations, using both surface-layer and planetary boundary-layer formulations. The surface-layer formulae predict momentum and latent heat fluxes to an accuracy comparable to the direct eddy correlation method, using transfer coefficients of C DN (at 10m and in neutral conditions) increasing with wind speed, and a constant C EN - 1.5 × 10 –3 . The data suggest C CHN , for sensible heat, increases significantly with wind speed and is on average 30% lower than C CEN The boundary-layer drag coefficient, C GD , agrees within about 40% of recently published values using a vertically averaged geostrophic wind to the height of the lowest temperature inversion, corrected for trajectory curvature. Values of * / from which C CGH is derived, are in excellent agreement if the published values are modified to account for inappropriate surface temperatures used in their derivation. Preliminary values of C GE are also presented.  相似文献   

18.
For measurements of eddy fluxes in the atmospheric boundary layer of gases (such as CO2) whose average concentration is very large compared to the fluctuations, corrections for air density fluctuations are required. With the boundary condition of no flux of dry air at the surface, the evaporation correction to eddy fluxes is 2.6 times larger than has been estimated with the boundary condition of no mass flux at all at the surface. The heat flux correction is also increased by a few per cent.  相似文献   

19.
A high resolution tunable diode laser absorption spectrometer (TDLAS) was used to measure the broadening effect of water vapor and other gases (dry air, nitrogen, oxygen, hydrogen and helium) on three methane lines in the v4 fundamental. The effects on methane eddy correlation flux measurements amount to a few percent for the least broadened line for expected H2O fluxes, to 10% for the most broadened line for higher H2O and lower CH4 fluxes likely to be encountered. The broadening coefficients of methane measured for air, N2, O2, and He are in good agreement with recently published values.  相似文献   

20.
Summary Using existing physical parameterizations, a new mathematical model is formulated to diagnose the diurnal variation of the energy fluxes and temperature on the snow-free tundra surface at Princess Marie Bay, Ellesmere Island, Canada. The input to the model consists of three meteorological variables which can be readily measured by an automatic weather station: incoming short-wave radiation, windspeed and screen level temperature. The model is based on the one-dimensional heat conduction equation for unfrozen soil, with surface heat exchange by short- and long-wave radiation and by convection and evaporation. A permafrost surface is used as a lower boundary condition. The model is formulated and tuned using a series of data from the Princess Marie Bay site. It is then tested using a separate data set from the same site and an independent data set from a nearby site.With 10 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号