首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents the detailed characterization of sea breeze (SB) over the Rayong coastal area, one of the most rapidly developed and highly industrialized areas during the last decade in Thailand, using observation data analysis and fine-resolution (2?km) mesoscale meteorological modeling with incorporation of new land cover and satellite-derived vegetation fraction data sets. The key characteristics considered include frequency of SB occurrence, sea-breeze day (SBD) identification, degree of inland penetration, and boundary layer development. It was found that SBs occur frequently in the winter due mainly to relatively large land–sea temperature contrasts and minimally in the wet season. Monthly mean SB onset and cessation times are at around 12–15 local time (LT) and 18–21 LT, respectively, and its strength peaks during the early- to mid-afternoon. Monthly SB hodographs generally exhibit clockwise rotations, and SB inland penetration (at PCD-T tower) ranges widely with the monthly means of 25–55?km from the coast. Mesoscale MM5 modeling was performed on two selected SBDs (13 January and 16 March 2006), on which the SBs are under weak and onshore strong influences from background winds, respectively. Simulated near-surface winds and temperature were found to be in fair-to-acceptable agreement with the observations. The SB circulation along the Rayong coast is clearly defined with a return flow aloft and a front on 13 January, while it is enhanced by the onshore background winds on 16 March. Another SB along the Chonburi coast also develops separately, but their fronts merge into one in the mid-afternoon, resulting in large area coverage by the SB. Simulated planetary boundary layer height over the land area is significantly affected by a thermal internal boundary layer (TIBL) induced by an SB, which is found to be low near the coast and increases toward the front (up to 800–1,000?m along the Rayong coast).  相似文献   

2.
Abstract

Three sites were instrumented to measure all components of the energy balance. The sites were located in the Churchill, Manitoba region and comprised a Sea Site on a sand spit 1 km seaward from the mainland, a Nearcoast Site 2 km inland from the coast and an Inland Site 65 km inland. Measurements were made continuously over a 90‐day period from 19 May to 16 August 1984. This period encompassed the bulk of the growing season.

The measurements were stratified into onshore and offshore wind directions and were compared for 10‐day periods. The comparisons show very significant differences attributable to the cold summer conditions promoted by the sea ice in Hudson Bay. The ground heat flux and latent heat flux were much greater during offshore winds but the sensible heat flux was greatest for onshore winds. Air temperatures averaged 7°C warmer for offshore than for onshore winds. The reasons for these differences are detailed and the climatic modifications that would probably result from earlier sea‐ice melt are discussed. Some implications of climatic modification are also noted.  相似文献   

3.
香港地区海陆风的显式模拟研究   总被引:2,自引:2,他引:2  
利用MM5模式对香港地区的海陆风进行了显式数值研究,模拟的风向、风速和温度与站点的观测值比较一致,较详细地分析了海陆风的日变化规律和三维结构特征,结果显示香港地区海风分布复杂,主要受偏西、偏南和偏东海风气流的影响,形成多个辐合带,海风锋最远可以深入内陆约90 km;陆风较简单,主要是偏北气流,陆风的风速和强度都比海风要弱,与山谷风、城市热岛环流等形成弱的辐合。香港是一个海岸曲折、多丘陵的地区,其中75%的面积是山区,为了研究这些丘陵地形对香港地区海陆风的影响,设计了保留海陆分布,去掉丘陵地形的敏感性试验,结果表明,由于丘陵地形的存在,在白天地形的热力作用是主要的,增强了海风的强度;而晚上动力阻挡作用比较明显,减弱了陆风的强度。  相似文献   

4.
The atmospheric conditions that lead to strong offshore surface winds in Southern California, commonly referred to as Santa Ana winds, are investigated using the North American Regional Reanalysis and a 12-year, 6-km resolution regional climate simulation of Southern California. We first construct an index to characterize Santa Ana events based on offshore wind strength. This index is then used to identify the average synoptic conditions associated with Santa Ana events—a high pressure anomaly over the Great Basin. This pressure anomaly causes offshore geostrophic winds roughly perpendicular to the region’s mountain ranges, which in turn cause surface flow as the offshore momentum is transferred to the surface. We find, however, that there are large variations in the synoptic conditions during Santa Ana conditions, and that there are many days with strong offshore flow and weak synoptic forcing. This is due to local thermodynamic forcing that also causes strong offshore surface flow: a large temperature gradient between the cold desert surface and the warm ocean air at the same altitude creates an offshore pressure gradient at that altitude, in turn causing katabatic-like offshore flow in a thin layer near the surface. We quantify the contribution of “synoptic” and “local thermodynamic” mechanisms using a bivariate linear regression model, and find that, unless synoptic conditions force strongly onshore winds, the local thermodynamic forcing is the primary control on Santa Ana variability.  相似文献   

5.
The inland and offshore propagation speeds of a sea breeze circulation cell are simulated using a three-dimensional hydrostatic model within a terrain-following coordinate system. The model includes a third-order semi-Lagrangian advection scheme, which compares well in a one-dimensional stand-alone test with the more complex Bott and Smolarkiewicz advection schemes. Two turbulence schemes are available: a local scheme by Louis (1979) and a modified non-local scheme based on Zhang and Anthes (1982). Both compare well with higher-order closure schemes using the Wangara data set for Day 33–34 (Clark et al., 1971).Two-dimensional cross-sections derived from airborne sea breeze measurements (Finkele et al. 1995) constitute the basis for comparison with two-dimensional numerical model results. The offshore sea breeze propagation speed is defined as the speed at which the seaward extent of the sea breeze grows offshore. On a study day, the offshore sea breeze propagation speed, from both measurements and model, is -3.4 m s-1. The measured inland propagation speed of the sea breeze decreased somewhat during the day. The model results show a fairly uniform inland propagation speed of 1.6 m s-1 which corresponds to the average measured value. The offshore sea breeze propagation speed is about twice the inland propagation speed for this particular case study, from both the model and measurements.The influence of the offshore geostrophic wind on the sea breeze evolution, offshore extent and inland penetration are investigated. For moderate offshore geostrophic winds (-5.0 m s-1), the offshore and inland propagation speeds are non-uniform. The offshore extent in moderate geostrophic wind conditions is similar to the offshore extent in light wind conditions (-2.5 m s-1). The inland extent is greater in light offshore geostrophic winds than in moderate ones. This suggests that the offshore extent of the sea breeze is less sensitive to the offshore geostrophic wind than its inland extent. However, these results hold only if it is possible to define an inland propagation speed. For stronger offshore geostrophic winds (-7.5 m s-1), the sea breeze is completely offshore and the inland propagation speed is ill-defined.  相似文献   

6.
The characteristics of the sea breeze in the Attica region of Greece, in which Athens is located, have been studied for occasions of weak synoptic-scale pressure gradient. The analysis is based on synoptic observations from six meteorological stations, three on the coast and three inland. The three inland stations and one of the coastal stations lie almost in a straight line at different distances from the coast. For each meteorological station, the basic characteristics of the sea breeze were determined, i.e.,
  1. The mean number of sea-breeze days for each calendar month.
  2. The monthly mean wind speed for each synoptic hour.
  3. The times of onset and cessation of the sea breeze.
  4. The monthly vector mean wind, and its constancy ‘Constancy’ is defined as 100{itV{inr}/V{ins}}, where {itV{inr}} is the magnitude of the vector mean wind, and {itV{ins}} is the scalar mean wind speed. See Brooks and Carruthers (1953). (In this paper, the factor 100 is not used.) for each synoptic hour.
  5. For days on which there was a sea breeze at Helliniko (the coastal reference station), the percentage number of days on which there was also a sea breeze at the given station.
An attempt was also made to determine further characteristics, such as the inland penetration of the sea breeze, its depth, the spatial and temporal variation of wind speed and direction, and the existence of the return flow. Finally, the properties of the land breeze are briefly outlined.  相似文献   

7.
A high-resolution mesoscale numerical model (MM5) has been used to study the coastal atmospheric circulation of the central west coast of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3 km mesh covers Goa and the surrounding region. Simulations have been carried out for three different seasons—northeast (NE) monsoon, transition period and southwest (SW) monsoon with appropriate physics options to understand the coastal wind system. The simulated wind speed and direction match well with the observations. The model winds show the presence of a sea breeze during the NE monsoon season and transition period, and its absence during the SW monsoon season. In the winter period, the synoptic flow is northeasterly (offshore) and it weakens the sea breeze (onshore flow) resulting in less diurnal variation, while during the transition period, the synoptic flow is onshore and it intensifies the sea breeze. During the northeast monsoon at an altitude of above 750 m, the wind direction reverses, and this is the upper return current, indicating the vertical extent of the sea breeze. A well-developed land sea breeze circulation occurs during the transition period, with vertical extension of 300 and 1,100 m, respectively.  相似文献   

8.
Summer precipitation over the Yangtze River basin (YRB) in 2020 experienced a strong subseasonal and synoptic fluctuation in addition to contributing to an exceptionally large seasonal mean precipitation. The cause of this higher-frequency fluctuation is examined based on observational analyses. Apart from the continuous northward movement of the climatological mei-yu rainband, the mei-yu rainbelt in the summer of 2020 experienced multiple northward and southward swings. The cause of the swings was attributed to the subseasonal variability of southerly winds to the south and northeasterly winds to the north of the YRB. In addition, synoptic-scale variability, characterized by the eastward propagation of low-level cyclonic vorticity and precipitation anomalies, was also commonplace in the summer of 2020. While the strengthening of both the subseasonal and synoptic variabilities in the summer of 2020 was attributed to the increase of the background mean moisture, the synoptic variability was greatly affected by the subseasonal rainfall variability. As a result, both the synoptic-scale and subseasonal variabilities contributed to the north-south swings of the rainbelt. The large-scale modulations by both the seasonal mean and subseasonal anomalies provide insight regarding the optimization of issuing accurate, extended-range forecasts of extreme weather events.  相似文献   

9.
The wind distribution over the Korean Peninsula was analyzed using numerically optimized wind data to reduce the uncertainties in estimating the wind resources. The simulated data were validated by a comparison with surface wind observations and three statistical indexes. According to the simulated surface winds, mesoscale circulation, such as land-sea breeze and mountain-valley winds affect the wind characteristics of the hub height at coastal and inland regions. However, the prevailing winds are strongly associated with the synoptic forcing at the island and mountainous regions, not the regional circulation. On the other hand, the atmospheric stability definitely affects the strength of the daytime and nocturnal wind speed at a hub height. Overall, there was a significant difference between the numerical and logarithmic method to estimate the wind energy at hub height. Moreover, the discrepancy in the wind density estimated using the two methods becomes clear over inland and mountainous areas.  相似文献   

10.
Summary The present paper is the continuation of two recent studies investigating the foehn-like valley wind system around Mittenwald (Bavarian Isar Valley). We deal with the synoptic/mesoscale conditions causing the local foehn (“Minifoehn”), considering field campaigns from both the mesoscale and the climatological point of view. Furthermore, we describe the structure and further features of the local foehn at smaller scales, using both the results of the VERTIKATOR field campaign and numerical simulations. We obtain as a new result that the foehn-caused local warm air pool around Mittenwald induces slight nocturnal upvalley winds between an adjacent valley basin located some 8 km north of Mittenwald and the basin of Mittenwald. Furthermore, a weak northerly flow may also occur at Mittenwald prior to the onset of the Minifoehn. Numerical simulations indicate that the local pressure gradient responsible for this phenomenon is related to a gravity wave forming over the hill range southwest of Mittenwald. Observations within a five-year period indicate that Minifoehn frequently occurs when ambient winds coming from the southern sector are predominant, but, contrary to deep foehn, weather conditions with northerly synoptic-scale flows do not necessarily exclude the development of the local foehn which comes from the southwest. We also present further evidence that in the presence of southerly synoptic-scale winds, orographic gravity waves interact with the drainage flow. Another new result is that strong synoptic-scale westerly winds are able to suppress the occurrence of Minifoehn. In addition, the possible influence of the Inn Valley wind system as well as dynamical differences between the thermally driven up- and downvalley winds are briefly discussed.  相似文献   

11.
This paper reports on a method using composites for studying synoptic conditions of a series of windstorm events selected on the basis of maximum wind speeds in Switzerland. The composite storm-averaged conditions indicate how flow fields, as well as related surface conditions, are organised so as to produce high wind speeds near the surface. On average, high winds in Switzerland, mainly generated by transient synoptic-scale eddies, are characterised by a minimum in the mean sea level pressure field over southern Norway, anticyclonic conditions south of 35°N and a steep pressure gradient over continental western Europe. The geopotential aloft has a predominant zonal structure, producing high winds between 45°N and 50°N over the eastern Atlantic and further inland; the jet stream has its maximum speed at 50°N over the Celtic Sea and Brittany at 250?hPa. Close to the surface, large temperature contrasts between the warm waters of the Atlantic Ocean and Mediterranean Sea and the cooler continent are diagnosed. The results thus obtained differ to those produced by other methods based on the analysis of deep cyclones or of strong vorticity in the northern North Atlantic Ocean basin. Differences of the composite mean synoptic conditions for current (1961?C1990) and future climate (2071?C2100) as simulated by the Global Climate Model HadAM3H in the context of the EU PRUDENCE project indicate that windstorms in a warmer world are generated by a subtle modification of the atmospheric baroclinicity, especially over the ocean and where greater ocean-continent temperature contrasts are simulated during winters. However, there are no signs of reduced storm activity as the climate warms by the end of the twenty-first century.  相似文献   

12.
We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0–200 km based on the sea surface wind data captured via buoys and oil platforms located along the east coast of Guangdong Province. The results of the analysis showed that average wind speed measured for each station reached a maximum in winter while minima occurred in summer, corresponding to obvious seasonal variation, and average wind speed increased with offshore distance. The prevailing wind direction at the nearshore site is the easterly wind, and the frequency of winds within 6–10 m s–1 is considerable with that of winds at > 10 m s–1. With the increase of the offshore distance, the winds were less affected by the land, and the prevailing wind direction gradually became northerly winds, predominately those at > 10 m s–1. For areas of shorter offshore distance (< 100 km), surface wind speeds fundamentally conformed to a two-parameter Weibull distribution, but there was a significant difference between wind speed probability distributions and the Weibull distribution in areas more than 100 km offshore. The mean wind speeds and wind speed standard deviations increased with the offshore distance, indicating that with the increase of the wind speed, the pulsation of the winds increased obviously, resulting in an increase in the ratio of the mean wind speed to the standard deviation of wind speed. When the ratio was large, the skewness became negative. When a relatively great degree of dispersion was noted between the observed skewness and the skewness corresponding to the theoretical Weibull curve, the wind speed probability distribution could not be adequately described by a Weibull distribution. This study provides a basis for the verification of the adaptability of Weibull distribution in different sea areas.  相似文献   

13.
Abstract

This study treats the energy balance during fast‐ice and floating‐ice conditions and examines overall seasonal patterns. The rate of ablation of the fast ice was controlled equally by net radiation and air temperature. The ratio of net/solar radiation increased 2.5 times during the ablation period owing to the decrease in ice albedo. Air temperature in the ablation zone was up to 8°C colder than that over the adjacent snow‐free terrestrial surface and remained near 0°Cfor the full ablation period. The sensible heat flux was small and downward (negative), whereas the evaporative heat flux was small and positive. Thus, the energy used in melting the ice was approximately equal to that provided by the net radiation. Above‐freezing air temperatures decreased the albedo through surface melting thus increasing net radiation. This combination of higher temperature and large net radiation was associated with offshore winds and resulted in large ablation relative to periods with colder onshore winds.

The floating‐ice period is one of great variability owing to changing ice conditions, variable current behaviour, tidal cycles and changing wind direction. The intertidal zone acts as a major heat sink, both early and late in the floating‐ice period. The turbulent heat fluxes were small and were either positive or negative. Nearly all of the energy from net radiation was used in melting ice and in warming tidal water during high tide and in warming the residual tidal ponds and in melting stranded ice rafts during low tide.

The overall study period, from May to September, included most of the season of positive radiation balance and above‐freezing temperatures. Winds were dominantly onshore in the first half of the period and equally onshore and offshore in the second half. Wind frequencies resembled longer term averages for other stations on James Bay and Hudson Bay. The ratio of net to solar radiation was at a maximum during the ice‐free period in August, whereas for adjacent terrestrial surfaces, it was largest at the summer solstice. Land‐sea breezes first developed in mid‐July and were influential in making offshore winds the dominant nocturnal regime. As a result, offshore winds were associated with small magnitudes of net radiation. Onshore winds were more than 5°C colder than those blowing offshore and their vapour pressure deficits were three times smaller. Convective heat fluxes were small for onshore winds and very small and usually negative for offshore winds. For all wind directions throughout the period, most of the available radiant energy was used to melt ice and to heat the sea water. This is a pattern similar to that of the ice‐covered or open sea and dissimilar to that of the adjacent terrestrial environment. It implies that the main energy‐balance transitions, during onshore airflow, occur at the high‐tide line.  相似文献   

14.
The statistically ensured estimates of characteristics of temporal variability of wind speed and wind direction are obtained on the basis of observations carried out in 1996–2001 at the offshore fixed platform in the northwestern part of the Black Sea. The maximum values of monthly mean wind speed (more than 8 m/s) are registered in the cold half-year and the minimum ones (~4 m/s), in summer. The moderate winds of northern and southern directions dominate during the whole year. Using the Pearson’s chi-squared test, it is demonstrated that the wind speed follows the normal distribution law during the most part of observation period. The largest deviations from the normal law are timed to the periods of existence of intensive large-scale anomalies in the ocean-atmosphere system. A significant alternation of both synoptic and lower-frequency intramonthly wind speed fluctuations with typical periods of ~10–15 days is revealed. Their peak amplitude was registered in the fall and winter season of 1997/98, i.e., it was observed during the mature phase of one of the most intensive El Niños during the whole period of instrumental observations. At that time, the energy of intramonthly low-frequency wind speed fluctuations (~4 m2/s2) was equal to the energy of fluctuations within the synoptic range of the spectrum.  相似文献   

15.
A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   

16.
Two-dimensional mesoscale model results support the claim of evening sea-breeze activity at Daly Waters, 280 km inland from the coast in northern Australia, the site of the Koorin boundary-layer experiment. The sea breeze occurs in conditions of strong onshore and alongshore geostrophic winds, not normally associated with such activity. It manifests itself at Daly Waters and in the model as a cooling in a layer 500–1000 m deep, as an associated surface pressure jump, as strong backing of the wind and, when an offshore low-level wind is present, as a collapse in the inland nocturnal jet.Both observational analysis and model results illustrate the rotational aspects of the deeply penetrating sea breeze; in our analysis this is represented in terms of a surge vector — the vector difference between the post- and pre-frontal low-level winds.There is further evidence to support earlier work that the sea breeze during the afternoon and well into the night — at least for these low-latitude experiments — behaves in many ways as an atmospheric gravity current, and that inland penetrations up to 500 km occur.  相似文献   

17.
Physical modelling of flow and dispersion over complex terrain   总被引:1,自引:1,他引:0  
Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.  相似文献   

18.
Boundary-Layer Meteorology - The goal of this work is to summarize synoptic meteorological conditions during the Coastal Fog (C-FOG) field project that took place onshore and offshore of the Avalon...  相似文献   

19.
20.
Summary A three-dimensional non-hydrostatic numerical model and lagrangian particle model (random walk model) were used to investigate the effects of the atmospheric circulation and boundary layer structure on the dispersion of suspended particulates in the Seoul metropolitan area. Initially, emitted particulate matter rises from the surface of the city towards the top of the convective boundary layer (CBL), owing to daytime thermal heating of the surface and the combined effect of an onshore wind with a westerly synoptic-scale wind. A reinforcing sea-valley breeze directed from the coast toward the city of Seoul, which is enclosed in a basin and bordered by mountains to its east, disperses the suspended particulate matter toward the eastern mountains. Total suspended particulate concentration (TSP) at ground level in the city is very low and relatively high in the mountains. Radiative cooling of the surface produces a shallow nocturnal surface inversion layer (NSIL) and the suspended particulate matter still present near the top of the CBL from the previous day, sinks to the surface. An easterly downslope mountain wind is directed into the metropolitan area, transporting particulate matter towards the city, thereby recycling the pollutants. The particulates descending from the top of the NSIL and mountains, combine with particulates emitted near the surface over the city at night, and under the shallow NSIL spread out, resulting in a maximum ground level concentration of TSP in the metropolitan area at 2300 LST. As those particles move toward the Yellow Sea through the topographically shaped outlet west of Seoul city under the influence of the easterly land breeze, the maximum TSP concentration occurs at the coastal site. During the following morning, onshore winds resulting from a combined synoptic-scale westerly wind and westerly sea breeze, force particulates dispersed the previous night to move over the adjacent sea and back over the inland metropolitan area. The recycled particulates combine with the particulates emitted from the surface in the central part of the metropolitan area, producing a high TSP and again rise towards the top of the CBL ready to repeat the cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号