首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten highly weathered soils in southeastern Nigeria were sampled from their typical A and B horizons for analyses. The objectives were to determine the different forms of Fe and Al oxides in the soils and relating their occurrence to phosphate availability and retention in the soils. The soils are deep and often physically degraded but are well drained and coarse in the particle size distribution. They are mostly dominated by kaolinite in their mineralogy with very high values of SiO2. The soils are acidic with low soil organic carbon (SOC) contents. The elements in the exchange complex are also low thus reflecting in the low CEC of the soil. Available phosphorus (P) in the soils are generally low while total P ranged from 157 to 982 mg kg−1 with an overall average of 422 mg kg−1. Total Fe in the soil is highest and their order represented as follows: Fet > Fed > Feox ≥ Fep. The pyrophosphate extractable Fe was always higher in the top soil than in the subsoil and was attributed to the fact that these forms of Fe are associated with organic matter which is more abundant in topsoil than in subsoil. Like in Fe forms, the order of Al occurrence could generally be presented as; Alt > Ald > Alox > Alp. More Fe and Al oxides in the soils are strongly crystalline while a small quantity is poorly crystalline Fe forms. The amorphous forms of both Fe and Al are very low in the soils when compared with the crystalline forms. The oxides that show very strong affinity to total P are Fed–Feox, Fed, Ald, Fet, Feox and Alox/Ald. To overcome this problem of P retention in the soil, we recommend constant liming of these soils to neutralize them, application of organic matter and of high dosage of phosphate fertilizer to the soils.  相似文献   

2.
The stability of some highly weathered soils of the tropics is controlled by their organo-mineral substances. Highly weathered soils from 10 different locations were sampled from their A and B horizons to determine their aggregate stability. The objective of the study was to determine the aggregate stability of the soils and their relationships with geochemical constituents. The major geochemical elements of the soils are quartz and kaolinite, SiO2, Al2O3 and Fe2O3, while the dithionite extractable Fe and Al was greater than their corresponding oxalate and pyrophosphate forms. The mean-weight diameter from dried aggregates (MWDd) and their corresponding wet mean-weight diameter (MWDw) were related significantly (r = 0.64*). The dithionite extracted Al and Fe or the crystalline forms of these elements were outstanding in the stability of the aggregates. However, this did not diminish the influence of SOC reduced to third order level in the stability of the soils. The influence of SOC in these soils, however, indirectly manifested on the role of Fep and Alp in the aggregation of these soils. The crystalline Fe and Al sesquioxides were very prominent in the aggregation and stability of these soils.  相似文献   

3.
Arctic soils contain a large fraction of Earth’s stored carbon. Temperature increases in the Arctic may enhance decomposition of this stored carbon, shifting the role of Arctic soils from a net sink to a new source of atmospheric CO2. Predicting the impact of Arctic warming on soil carbon reserves requires knowledge of the composition of the stored organic matter. Here, we employ solid state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to investigate the chemical composition of soil organic matter collected from drained thaw-lake basins ranging in age from 0 to 5500 years before present (y BP). The 13C NMR and FTIR-PAS data were largely congruent. Surface horizons contain relatively large amounts of O-alkyl carbon, suggesting that the soil organic matter is rich in labile constituents. Soil organic matter decreases with depth with the relative amounts of O-alkyl carbon decreasing and aromatic carbon increasing. These data indicate that lower horizons are in a more advanced stage of decomposition than upper horizons. Nonetheless, a substantial fraction of carbon in lower horizons, even for ancient thaw-lake basins (2000-5500 y BP), is present as O-alkyl carbon reflecting the preservation of intrinsically labile organic matter constituents. Climate change-induced increases in the depth of the soil active layer are expected to accelerate the depletion of this carbon.  相似文献   

4.
Choosing soil series scale for assessing phosphorus (P) retention and release characteristics may help relate routinely collected series-specific soil survey data with P retention and aid in designing series-specific P management strategies. Phosphorus retention and release characteristics of pedons collected from two benchmark upland soil series (Berks and Monongahela) and two floodplain (Huntington and Lindside) soil series of West Virginia (USA) were assessed by evaluating P sorption capacity (PSC, Langmuir method) and its major determinants, and effect of different levels of degree of P saturation (DPS) and soil test P (STP, Mehlich-1 P) on the desorbable P (0.01 M CaCl2-extractable) concentrations. The PSC of the two floodplain soils, Huntington and Lindside, was similar but lower than PSC of upland Berks and Monongahela soils. However, thicker A horizons of Huntington and Lindside soils may compensate for their lower PSC. The B horizons exhibited higher PSC than A horizons. However, slow permeability and thinness of such horizons may discount the higher PSC effect. Relationship of PSC with ammonium oxalate extractable Al (AOX-Al) and Fe (AOX-Fe), dithionite–citrate–bicarbonate extractable Al (DCB-Al) and Fe (DCB-Fe), total C, clay content, and pH [soil:water ratio 1:1 (pH-water) and soil:0.01 M CaCl2 solution ratio 1:2 (pH-CaCl2)] showed that in general all except Fe and total C influenced PSC significantly. Aluminum associated with crystalline clay minerals particularly affected PSC, especially of upland soils. Most of the soils did not release considerable P even beyond the conventional critical limit of 25 % DPS for well-drained soils. DPS-desorbable P relationships, though, reflected poor reliability of DPS as an environmental index. At a given DPS and STP, surface horizons released more P than their subsurface counterparts and thus reflected the net sink character of subsurface horizons. Most of the soils did not show considerable release of P even beyond agronomically high STP levels (>23 mg kg?1). The study provides an economical alternative to time and money-intensive lysimetric studies for assessing subsurface P loss. It reveals the workability of integrating environmental P studies with soil survey data and superiority of integrated assessment of environmental indices of P over the use of any single index.  相似文献   

5.
The impact of 60 a of SO2 emissions from a Ni–Cu plant in the Kola Peninsula (Russia) on soil S contents was assessed in podzols under pine forests. Sulphate desorption and the possible delay of acidification reversal was investigated, because the plant will be reconstructed in 2006 with an expected emission reduction of 90%. Sites were sampled along a pollution gradient in the prevailing wind direction from 1 to 66 km. The investigated podzols stored S mostly in the organic form. The concentrations of total and organic S in soil organic horizons tended to be higher near the smelter but were only weakly correlated with S deposition. No relationship between distance to smelter and S contents was found for the mineral horizons. Sulphate content and desorption behavior were highly variable due to natural variations of texture and extractable Al and Fe contents of the soils. The lack of a clear strong trend with distance from the smelter except in the organic layer indicated that long range transport and diffuse input of SO4 played a major role rather than point source impact. It was concluded that biological turnover is most likely the regulating process in these soils and thus low to medium release of SO4 is expected under decreasing deposition scenarios because organic S was the dominant fraction of total S in all soils.  相似文献   

6.
The mineralogical composition of soil horizons in different soil types of different ages was estimated by applying the NORMA software, which was developed originally for calculating the normative mineralogical composition of young podsols. Ten soil profiles from six sites in NW Russia, two in Finland, and one in NE Norway were sampled in 1999 as a part of the pilot phase of a large geochemical mapping project. Total element concentrations were determined from the <2 mm fraction by XRF from powdered pellets for Al, Ca, Cr, Fe, K, Mg, Mn, Na, P, S, Si, Ti, and Zr, and for Ba by ICP-AES after HF+HClO4 extraction. Extractable concentrations for Al, Ca, Cr, Fe, K, Mn, Mg, Na, P, S, Ti, Zr, and Ba were determined by ICP-MS or ICP-AES after aqua regia (a 1:3 mixture of strong HCl and HNO3) extraction. Total C was determined using a thermal conductivity detector from a sample burned in an O2 stream. The NORMA software was used to calculate the percentage of normative soluble minerals pyrite, apatite, titanite, calcite, biotite, chlorite, weathered albite, hydrous Al-silicate, goethite and soluble residue. The percentages of non-soluble normative minerals rutile, hornblende, K-feldspar, albite, anorthite, tremolite, wollastonite, kaolinite, magnetite, zircon, quartz, carbon (graphite), and non-soluble residue were calculated after soluble minerals.The calculated mineralogical composition of C-horizon samples in each profile reflected the known geological composition of the bedrock from which the soil parent material was derived during geological processes. Secondary minerals including goethite and hydrous Al-silicates, were detected in upper soil horizons reflecting the development of soils. Rather than age, the local bedrock geology together with the mineralogical composition and chemical properties of the parent material proved to be the controlling factor in the formation of secondary minerals. The results showed that the NORMA method can be used in defining the mineralogy of soil horizons in a large variety of soil types.  相似文献   

7.
《Applied Geochemistry》2005,20(7):1258-1267
Distributions of 21 major and trace elements in HNO3 extracts of different horizons were studied in 13 podzol profiles from the boreal forest in different parts of Norway using ICP–MS. On the basis of ratios between the HNO3-extractable fractions in the various horizons some general trends were elucidated. Two different groups of elements concentrated in the humus layer relative to the mineral horizons were identified, one mainly associated with contributions from air pollution (As, Cd, Sb, Pb), another one with plant nutrient circulation (K, Ca, Mn and to a lesser extent Mg, Co, Ni, Rb) and some with both mechanisms (Cu, Zn, Tl). The elements most clearly enriched along with Fe in the B horizon were V, Pb, Al, and Cr in that order, Pb partly because of leaching from the polluted organic surface soil. Four soils in the far south showed a behaviour distinctly different from the rest and were treated as a separate group. Relative to the more northerly sites the surface horizons of these soils were strongly depleted in lithogenic elements (Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, La) and enriched in elements typical of long-range transport of pollutants (As, Cd, Sb, Tl, Pb). Also the B horizon in the southern soils was strongly depleted in the lithogenic group elements, including Fe and the associated metals. The main reason for this difference is assumed to be the greater influence of transboundary air pollution and associated metals and stronger soil acidification in the far south of the country.  相似文献   

8.
Copper stable isotope ratios are fractionated during various biogeochemical processes and may trace the fate of Cu during long-term pedogenetic processes. We assessed the effects of oxic weathering (formation of Cambisols) and podzolization on Cu isotope ratios (δ65Cu). Two Cambisols (oxic weathered soils without strong vertical translocations of soil constituents) and two Podzols (soils showing vertical translocation of organic matter, Fe and Al) were analyzed for Cu concentrations, partitioning of Cu in seven fractions of a sequential extraction and δ65Cu values in bulk soil. Cu concentrations in the studied soils were low (1.4-27.6 μg g−1) and Cu was mainly associated with strongly bound Fe oxide- and silicate-associated forms. Bulk δ65Cu values varied between −0.57‰ and 0.44‰ in all studied horizons. The O horizons had on average significantly lighter Cu isotope compositions (−0.21‰) than the A horizons (0.13‰) which can either be explained by Cu isotope fractionation during cycling through the plants or deposition of isotopically light Cu from the atmosphere. Oxic weathering without pronounced podzolization in both Cambisols and a weakly developed Podzol (Haplic Podzol 2) caused no significant isotope fractionation in the single profiles, while a slight tendency to lower δ65Cu values with depth was visible in all four profiles. This is the opposite depth distribution of δ65Cu values to that we observed in hydromorphic soils (soils which show indication of redox changes because of the influence of water saturation) in a previous study. In a more pronounced Podzol (Haplic Podzol 1), δ65Cu values and Cu concentrations decreased from Ah to E horizons and increased again deeper in the soil. Humus-rich sections of the Bhs horizon had higher Cu concentrations (2.8 μg g−1) and a higher δ65Cu value (−0.18‰) than oxide-rich sections (1.9 μg g−1, −0.35‰) suggesting Cu translocation between E and B horizons as organo-Cu complexes. The different depth distributions in oxic weathered and hydromorphic soils and the pronounced vertical differences in δ65Cu values in Haplic Podzol 1 indicate a promising potential of δ65Cu values to improve our knowledge of the fate of Cu during long-term pedogenetic processes.  相似文献   

9.
《Applied Geochemistry》1995,10(3):307-315
Arsenic concentrations in soils may be elevated either because of anthropogenic activity or because of a high natural abundance of the parent material. In the unsaturated zone of seven forest soils in northern Sweden, inorganic As(V) generally dominated the solid-phase speciation while non-NaBH4-reducible organic As associated with isolated humic substances (humic As) was present in low amounts. In unpolluted soils, absorbed As(V) was more or less constant through the B and C horizons and did not show any obvious relationship with secondary short-range ordered Fe or Al minerals-this suggested that most As(V) had formed early during pedogenesis as a result of sulphide weathering. When a small amount of As(V) was added to the mineral soils, adsorption was almost complete and the amount of remaining As(V) in solution depended on the ratio of pyrophosphate-C to oxalate-(Fe + Al). On higher As(V) additions, the amount of adsorption sites governed the As solubility. As regards the humic As, the XAD-4 acid fulvates were more enriched with As as compared to the hydrophobic acids. The As content of the forest floor was highly dependent on the distance from the Rönnskärsverken non-ferrous metal smelter, but did not reflect the As content of the underlying horizons; thus, biological uptake of As from the mineral soil appeared to be very low.  相似文献   

10.
 The properties of soils on previously dated sand dunes from Robe to Naracoorte in South Australia were examined. In these areas younger sand dunes are composed of fresh sand, but older sand dunes are composed of calcarenited sand. The soils on the sand dunes developed successionally by the age of sand dunes. The soil properties of these sand dunes differ depending on the ages of the sand dunes. The properties of sand particles in soils are as follows: (1) On the sand dunes of 4300 years B.P., A/C profile developed (Rendzina). On the sand dunes older than 125 000 years B.P. and on the plateau of Tertiary limestone, soil profiles of A1/AB/B/C on the sand dunes of 83 000 years B.P. and A1/A3/B1/B2/C (Terra rossa) are well developed. (2) Within the sand of A/C horizons of the sand dunes with the age of 4300 year B.P., the calcite grain content is about 64%, and the quartz content is about 35%. Within the B horizons of soils on the dunes from 83 000 years B.P. to 347 000 years B.P., the calcite grain content is only 1–2%; however, the quartz grain content is about 92%. In the B2 horizons of soils on the dune of 690 000 years B.P. and on the Tertiary plateau, there are some calcite grains but the quartz grain content is about 96%. (3) The average size of quartz grains in the soils on the sand dunes from 4300 B.P. to 347 000 years B.P. is generally smaller, but the average size of quartz on the sand dunes of 690 000 year B.P. becomes larger and the grains are well rounded. On the Tertiary limestone plateau, the average quartz size becomes again smaller, and the grains are more rounded. (4) Fet in B2 horizon of the soil profiles increases clearly corresponding to the age. Iron activity expressed by Feo/Fed also shows a close relation to the chronological sequence. The B horizon of the soil profiles shows a drastic decrease of Feo/Fed according to the age. Iron crystalinity, (Fed-Feo)/Fet, has a tendency for a positive relation with increasing age. Received: 1 June 1995 · Accepted: 4 December 1995  相似文献   

11.
The solubility of aluminium (Al) in many acidic soils is controlled by complexation reactions with soil organic matter. In such soils, Al solubility is theoretically a function of the pool size of “active” Al, i.e., the total amount of Al that equilibrates with the soil solution within a defined period of time. To date, no reliable measurements of “active” Al in soil materials exist. In this study, we determined the isotopically exchangeable pool of Al (EAl) as an operationally defined assessment of “active” Al in acidic mineral soils. The suitability of CuCl2 and pyrophosphate (Na4P2O7) as extractants for “active” Al was also evaluated. Eleven samples, mostly from spodic B horizons, were spiked with carrier-free 26Al and equilibrated for different time periods (1-756 h). The size of the Al pool with which the 26Al tracer exchanged increased with time during the whole experimental period. Thus, contact time between solid and solution phases needs to be defined when assessing the “active” Al pool. Values of EAl obtained after 1 to 5 d of equilibration were equal to the amount of CuCl2 extractable Al, but considerably smaller than the Na4P2O7-extractable pool. Equilibration times greater than 5 d resulted in CuCl2 extractable Al concentrations that under-estimated the “active” Al pool. Three of the investigated samples were rich in imogolite-type materials (ITM). In these samples, 30-50 % of the added 26Al rapidly became associated with soil constituents in forms that could not be extracted by Na4P2O7, indicating that a part of ITM may be in a dynamic state.  相似文献   

12.
Groundwater down-gradient from a mine rock dump in Dalarna, Sweden was sampled from the onset of snowmelt runoff (April) until October in order to investigate seasonal variations in groundwater composition. The results demonstrate that considerable variation in solute concentration (Al, Cu, Fe, SO42−, Zn) and acidity occurs in groundwater; the greatest change in solute concentrations occurs during the melting of the snow cover, when sulfide oxidation products are flushed from the rock dump. During this period, groundwater flow is concentrated near the soil surface with an estimated velocity of 1 m/day. Groundwater acidity varied by a factor of four closest to the rock dump during the sampling period, but these variations were attenuated with distance from the rock dump. Over a distance of 145 m, groundwater pH increases from 2.5 to 4.0 and acidity decreases from 3–13 to 0.8–1.1 meq/L, which is the combined effect of ferric iron precipitation and aluminosilicate weathering. As a result of flushing from the upper soil horizons, peaks in total organic carbon and ammonium concentrations in groundwater are observed at the end of snowmelt. In soils impacted by acidic surface runoff, the sequential extraction of C horizon soils indicates the accumulation of Cu in well-crystallized iron oxyhydroxides in the upper C horizon, while Cu, Fe, Ni and Zn accumulate in a well-crystallized iron oxyhydroxide hardpan that has formed 2.5m below the ground surface. Surface complexation modeling demonstrates that SO42− and Cu adsorb to the abundant iron oxyhydroxides at pH < 4, while Zn adsorption in this pH range is minimal.  相似文献   

13.
The use of Tamm's reagent at 60°C and at different reaction times enables the progressive dissolution of iron oxides from the different horizons of acid brown soils. This technique is used to evaluate the association between Cu and Fe in soils from a zone mineralized in Cu. This association is quantified by the coefficient α (moles Cu/moles Fe) which represents the degree of doping of the iron oxides by Cu. For the B horizon of these soils, α values range from 5 to 10 × 10-3 mole Cu/mole Fe.Calculation of the coefficient α (range = 0.4 to 2.0 × 10-3) for 150 soil samples of the same type enabled the differentiation of two geochemical populations. Treatment of the total Cu values of these samples did not permit such differentiation.  相似文献   

14.
Phosphate sorption and desorption experiments were conducted with four ferruginous soils (alfisols) of Eastern India, in view of the low native phosphate concentrations in tropical Indian soils. From the P-isotherm curve, standard P requirement (SPR) of the soils was determined. Phosphate sorption data were fitted to both Langmuir and Freundlich equations and mean sorption maximum values obtained for the different soil series were in the decreasing order as Matimahal > Anandapur > Mrigindih > Kashipur. The fraction of added P sorbed followed the same trend as SPR, P sorption maximum (Pmax), phosphate affinity constant (K), maximum phosphate buffering capacity (MPBC), Freundlich constant K′ and phosphate desorption values. Phosphate sorption maximum was significantly correlated with MPBC, Freundlich 1/n, SPR, clay and different forms of Fe and Al. The value of K (bonding energy) was significantly correlated with MPBC, Freundlich K′ and pyrophosphate extractable Fe and Al. The MPBC was significantly correlated with Freundlich K′, Freundlich constant 1/n, clay, oxalate and dithionite extractable, amorphous and crystalline form of Fe and Al. Freundlich K′ was significantly correlated with Freundlich 1/n, pHwater, clay, dithionite extractable and crystalline form of Fe and Al. The results suggested that the soils having higher amount of extractable and reactive Fe and Al shared higher P sorbtion capacity and such soils may need higher levels of P application  相似文献   

15.
High concentrations of metals in organic matter can inhibit decomposition and limit nutrient availability in ecosystems, but the long-term fate of metals bound to forest litter is poorly understood. Controlled experiments indicate that during the first few years of litter decay, Al, Fe, Pb, and other metals that form stable complexes with organic matter are naturally enriched by several hundred percent as carbon is oxidized. The transformation of fresh litter to humus takes decades, however, such that current datasets describing the accumulation and release of metals in decomposing organic matter are timescale limited. Here we use atmospheric 210Pb to quantify the fate of metals in canopy-derived litter during burial and decay in coniferous forests in New England and Norway where decomposition rates are slow and physical soil mixing is minimal. We measure 210Pb inventories in the O horizon and mineral soil and calculate a 60-630 year timescale for the production of mobile organo-metallic colloids from the decomposition of fresh forest detritus. This production rate is slowest at our highest elevation (∼1000 m) and highest latitude sites (>63°N) where decomposition rates are expected to be low.We calculate soil layer ages by assuming a constant supply of atmospheric 210Pb and find that they are consistent with the distribution of geochemical tracers from weapons fallout, air pollution, and a direct 207Pb application at one site. By quantifying a gradient of organic matter ages with depth in the O horizon, we describe the accumulation and loss of metals in the soil profile as organic matter transforms from fresh litter to humus. While decomposition experiments predict that Al and Fe concentrations increase during the initial few years of decay, we show here that these metals continue to accumulate in humus for decades, and that enrichment occurs at a rate higher than can be explained by quantitative retention during decomposition alone. Acid extractable Al and Fe concentrations are higher in the humus layer of the O horizon than in the mineral soil immediately beneath this layer: it is therefore unlikely that physical soil mixing introduces significant Al and Fe to humus. This continuous enrichment of Al and Fe over time may best be explained by the recent suggestion that metals are mined from deeper horizons and brought into the O horizon via mycorrhizal plants. In sharp contrast to Al and Fe, we find that Mn concentrations in decomposing litter layers decrease exponentially with age, presumably because of leaching or rapid uptake, which may explain the low levels of acid extractable Mn in the mineral soil. This study quantifies how metals are enriched and lost in decomposing organic matter over a longer timescale than previous studies have been able to characterize. We also put new limits on the rate at which metals in litter become mobile organo-metallic complexes that can migrate to deeper soil horizons or surface waters.  相似文献   

16.
The poorly crystalline Fe(III) hydroxide ferrihydrite is considered one of the most important sinks for (in)organic contaminants and nutrients within soils, sediments, and waters. The ripening of ferrihydrite to more stable and hence less reactive phases such as goethite is catalyzed by surface reaction with aqueous Fe(II). While ferrihydrite within most natural environments contains high concentrations of adsorbed or co-precipitated cations (particularly Al), little is known regarding the impact of these cations on Fe(II)-induced transformation of ferrihydrite to secondary phases. Accordingly, we explored the extent, rates, and pathways of Fe(II)-induced secondary mineralization of Al-ferrihydrites by reacting aqueous Fe(II) (0.2 and 2.0 mM) with 2-line ferrihydrite containing a range of Al levels substituted within (6-24 mol% Al) or adsorbed on the surface (0.1-27% Γmax). Here, we show that regardless of the Fe(II) concentration, Al substituted within or adsorbed on ferrihydrite results in diminished secondary mineralization and preservation of ferrihydrite. In contrast to pure ferrihydrite, the concentration of Fe(II) may not in fact influence the mineralization products of Al-compromised ferrihydrites. Furthermore, the secondary mineral profiles upon Fe(II) reaction with ferrihydrite are not only a function of Al concentration but also the mode of Al incorporation. While Al substitution impedes lepidocrocite formation and magnetite nucleation, Al adsorption completely inhibits goethite formation and appears to have a lesser impact on magnetite nucleation. When normalized to total Al content associated with ferrihydrite, Al adsorption results in greater degree of ferrihydrite preservation relative to Al substitution. These findings provide insight into mechanisms that may be responsible for ferrihydrite preservation and low levels of secondary magnetite typically found in sedimentary environments. Considering the preponderance of cation substitution within and adsorption on ferrihydrite in soils and sediments, the reactivity of natural (compromised) ferrihydrites and the subsequent impact on mineral evolution needs to be more fully explored.  相似文献   

17.
Chemical weathering of basalts in the Putorana Plateau, Central Siberia, has been studied by combining chemical and mineralogical analysis of solids (rocks, soils, river sediments and suspended matter) and fluid solution chemistry in order to quantify CO2 consumption and to assess the major factors controlling basic rock weathering under permafrost-dominated taiga climate. The chemical status of  40 major and trace elements (TE) in pristine boreal rivers and interstitial solutions of permafrost soils has been investigated using in-field ultrafiltration procedure. This revealed strong relationships between concentration of TE and that of major inorganic components of colloids, i.e., Fe or Al. Decomposing plant litter and permafrost thawing are considered important sources of most major and trace elements in Arctic rivers during summertime.  相似文献   

18.
Histic Andosol in Western Iceland was studied using laboratory based repacked microcosms conjointly with sampling of field soil solution. The main primary phase of the 205 cm thick soil profile was basaltic glass, allophane content ranged from 2 to 22 wt.% and the soil carbon content ranged from 11 to 42 wt.%. At constant temperature, the dissolution rate of the basaltic glass, and probably allophane and imogolite, was dictated by the aH+3 / aAl3+ activity ratio only, which in turn is governed by the pH, total dissolved Al and the anions capable of complexing Al3+; SO42−, F and organic anions (DOC). Dissolution rate was slowed down by up to 20% by decreasing undersaturation in the field. Dissolution rate of basaltic glass was stable after an initial flushing event at the beginning of microcosm experiments. Predicted dissolution rates increased up to a factor of 7 and 30 by speciating Al3+ with oxalate in field and microcosms respectively. Speciation with oxalate generally had more effect in shallow horizons than deep horizons.  相似文献   

19.
The sorption parameters of Cu, Zn and Pb are related to the composition of the different genetic horizons of a Luvisol profile in batch sorption experiments. The affinities of metals towards the soil samples from different horizons followed the same sequence, e.g. Pb≥C>>Zn. By far the highest metal retention was found in the Ck horizon due to the alkaline conditions. It is followed by the A horizon with its high organic matter content, while the lowest sorption capacity was found in the Bt horizon. In the horizons free of carbonate, primarily Pb and Cu were immobilized. The studied soil can be characterized by high amount of organic matter, clay accumulation horizon, as well as calcareous subsoil. This kind of profile development makes soils able to immobilize a significant metal pollution.  相似文献   

20.
Tidal inundation was restored to a severely degraded tropical acid sulfate soil landscape and subsequent changes in the abundance and fractionation of Al, Fe and selected trace metals were investigated. After 5 a of regular tidal inundation there were large decreases in water-soluble and exchangeable Al fractions within former sulfuric horizons. This was strongly associated with decreased soil acidity and increases in pH, suggesting pH-dependent immobilisation of Al via precipitation as poorly soluble phases. The water-soluble fractions of Fe, Zn, Ni and Mn also decreased. However, there was substantial enrichment (2–5×) of the reactive Fe fraction (FeR; 1 M HCl extractable) near the soil surface, plus a closely corresponding enrichment of 1 M HCl extractable Cr, Zn, Ni and Mn. Surficial accumulations of Fe(III) minerals in the inter-tidal zone were poorly crystalline (up to 38% FeR) and comprised mainly of schwertmannite (Fe8O8(OH)6SO4) with minor quantities of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). These Fe (III) mineral accumulations provide an effective substrate for the adsorption/co-precipitation and accumulation of trace metals. Arsenic displayed contrary behaviour to trace metals with peak concentrations (∼60 μg g−1) near the redox minima. Changes in the abundance and fractionation of the various metals can be primarily explained by the shift in the geochemical regime from oxic–acidic to reducing-circumneutral conditions, combined with the enrichment of reactive Fe near the soil surface. Whilst increasing sequestration of trace metals via sulfidisation is likely to occur over the long-term, the current abundance of reactive Fe near the sediment–water interface favours a dynamic environment with respect to metals in the tidally inundated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号