首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Summary We present compositions of reheated melt inclusions in clinopyroxene phenocrysts from three mafic xenoliths in Breccia Museo, Campi Flegrei, Italy. Melt inclusion compositions are remarkably different from the compositions of known contemporary Campi Flegrei lavas, being significantly enriched in K2O and depleted in Na2O. Some differences are also evident in FeO* (total Fe as FeO) and TiO2 contents. The clinopyroxene phenocrysts could not have crystallised from Campi Flegrei magmas. We suggest that they originated from a volcanic system genetically very similar to, and possibly linked with, the >14 ka volcanic system of Mt. Somma, another Campanian volcano ∼ 30 km east from Campi Flegrei, from which Vesuvius subsequently developed. This result indicates a close relationship (or link) between the two volcanic systems which have until now been considered separate. We speculate that the link was established prior to eruption of the Neapolitan Yellow Tuff (NYT) (∼ 12 ka). The xenoliths were derived from a volcanic system older than the host breccias themselves. We suggest that this older volcanism had close similarities with the volcanism of the older products of Mt. Somma (∼25 ka). Received March 20, 2000; accepted November 2, 2000  相似文献   

3.
Volcanic ash (tephra) erupted from the frequently active Campi Flegrei volcano forms layers in many palaeoenvironmental archives across Italy and the Mediterranean. Proximal deposits of 50 of the post-15 ka eruptions have been thoroughly sampled and analysed to produce a complete database of glass compositions (>1900 analyses) to aid identification of these units. The deposits of individual eruptions are compositionally diverse and this variability is often greater than that observed between different units. Many of the tephra units do not have a unique glass chemistry, with compositionally similar tephra often erupted over long periods of time (1000s years). Thus, glass chemistry alone is not enough to robustly correlate most of the tephra from Campi Flegrei, especially in the last 10 kyrs. In order to reliably correlate the eruption units it is important to take into account the stratigraphy, chronology, magnitude, and dispersal of the eruptions, which has been collated to aid identification. An updated chronology is also presented, which was constrained using Bayesian analysis (OxCal) of published radiocarbon dates and 40Ar/39Ar ages. All the data presented can be employed to help correlate post-15 ka tephra units preserved in archaeological and Holocene palaeoenvironmental archives. The new database of proximal glass compositions has been used to correlate proximal volcanic deposits through to distal tephra layers in the Lago di Monticchio record (Wulf et al., 2004, Wulf et al., 2008) and these correlations provide information on eruption stratigraphy and the tempo of volcanism at Campi Flegrei.  相似文献   

4.
We present in this work a tephrostratigraphic record from a sediment piston core (JO 2004) from Lake Ohrid. Five tephra layers were recognised, all from explosive eruptions of southern Italy volcanoes. A multidisciplinary study was carried out, including stratigraphy, AMS 14C chronology and geochemistry. The five tephra layers were correlated with terrestrial proximal counterparts and with both marine and lacustrine tephra layers already known in the central Mediterranean area. The oldest is from Pantelleria Island (P11, 131 ka BP). Other three tephra layers are from Campanian volcanoes: X6, Campanian Ignimbrite-Y5 and SMP1-Y3 (107, 39 and 31 ka BP respectively). The youngest tephra layer corresponds to the FL eruption from Etna Volcano (3.4 ka BP). In three cases these recognitions confirm previous findings in the Balkans, while two of them were for the first time recognised in the area, with a significant enlargement of the previous assessed dispersal areas.  相似文献   

5.
Summary The evolution of the Mt. Somma caldera is reconstructed by means of volcanological, geological and geomorphologic data. The present caldera shape results from two caldera forming events: (a) break-up of the upper part of the older structure, which occurred between 17 and 8Kyr B.P. through a series of external volcaniclastic debris flow depositions and internal collapses into a cored-out vent. (b) W–SW directed sector collapse of the enlarged Mt. Somma crater, caused by excess vapour pressure generated during the Avellino eruption (3.5Kyr B.P.). At this time, the morphology of the Mt. Somma crater probably resembled the demolished crater formed in 1980 at Mt. St. Helens. Flank failure of Mt. Somma during the Avellino eruption was probably caused both by a migration of the vent to the west and a drastic change of the hydrogeological conditions at depth. Flank failure processes were extended to the S–SE sector of the Mt. Somma edifice during the 79 A.D. and 472 A.D. eruptions. After the 472 A.D. eruption interplinian activity during the Middle Ages resulted in the formation of the Vesuvius cone inside the Mt. Somma caldera.  相似文献   

6.
Summary The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region. Received August 1, 2000; accepted November 2, 2000  相似文献   

7.
Summary Reheated silicate melt inclusions in volcanic rock samples from Mt. Somma-Vesuvius, Italy, have been analyzed for 29 constituents including H2O, S, Cl, F, B, and P2O5. This composite volcano consists of the older Mt. Somma caldera, formed between 14 and 3.55 ka before present, and the younger Vesuvius cone. The melt inclusion compositions provide important constraints on pre-eruptive magma geochemistry, identify relationships that relate to eruption behavior and magma evolution, and provide extensive evidence for magmatic fluid exsolution well before eruption. The melt inclusion data have been categorized by groups that reflect magma compositions, age, and style of eruptions. The data show distinct differences in composition for eruptive products older than 14.0 ka (pre-caldera rocks) versus eruptive products younger than 3.55 ka. Moreover, pre-caldera eruptions were associated with magmas relatively enriched in SiO2, whereas eruptions younger than 3.55 ka (i.e., the syn- and post-caldera magmas which generated the Somma caldera and the Vesuvius cone) were derived from magmas comparatively enriched in S, Cl, CaO, MgO, P2O5, F, and many lithophile trace elements. Melt inclusion data indicate that eruptive behavior at Vesuvius correlates with pre-eruptive volatile enrichments. Most magmas associated with explosive plinian and subplinian events younger than 3.55 ka contained more H2O, contained significantly more S, and exhibited higher (S/Cl) ratios than syn- and post-caldera magmas which erupted during relatively passive interplinian volcanic phenomena. Received January 10, 2000 Revised version accepted July 17, 2000  相似文献   

8.
A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the early- to mid-Holocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9 cal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in early-Holocene sediments is thought to tentatively correlate with the ~9.6 cal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6 cal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions.  相似文献   

9.
Cryptotephrochronology, the use of hidden, diminutive volcanic ash layers to date sediments, has rarely been applied outside western Europe but has the potential to improve the tephrochronology of other regions of the world. Here we present the first comprehensive cryptotephra study in Alaska. Cores were extracted from five peatland sites, with cryptotephras located by ashing and microscopy and their glass geochemistry examined using electron probe microanalysis. Glass geochemical data from nine tephras were compared between sites and with data from previous Alaskan tephra studies. One tephra present in all the cores is believed to represent a previously unidentified eruption of Mt. Churchill and is named here as the ‘Lena tephra’. A mid-Holocene tephra in one site is very similar to Aniakchak tephra and most likely represents a previously unidentified Aniakchak eruption, ca. 5300-5030 cal yr BP. Other tephras are from the late Holocene White River eruption, a mid-Holocene Mt. Churchill eruption, and possibly eruptions of Redoubt and Augustine volcanoes. These results show the potential of cryptotephras to expand the geographic limits of tephrochronology and demonstrate that Mt. Churchill has been more active in the Holocene than previously appreciated. This finding may necessitate reassessment of volcanic hazards in the region.  相似文献   

10.
A continuous-coring borehole recently drilled at Camaldoli dellaTorre on the southern slopes of Somma–Vesuvius providesconstraints on the volcanic and magmatic history of the Vesuvianvolcanic area since c. 126 ka BP. The cored sequence includesvolcanic units, defined on stratigraphical, sedimentological,petrological and geochemical grounds, emitted from both localand distal vents. Some of these units are of known age, suchas one Phlegraean pre-Campanian Ignimbrite, Campanian Ignimbrite(39 ka), Neapolitan Yellow Tuff (14· 9 ka) and VesuvianPlinian deposits, which helps to constrain the relative ageof the other units. The main rock types encountered are shoshonite,phonotephrite, latite, trachyte and phonolite. The sequenceincludes, from the base upwards: a thick succession of pyroclasticunits emplaced between 126 and 39 ka, most of them attributedto eruptions that occurred in the Phlegraean area; the CampanianIgnimbrite; the products of a local tuff cone formed between39 ka and the deposition of the products of the earliest activityof the Mt. Somma volcano; the products of the Somma–Vesuviusvolcano, which include from the base upwards a thick sequenceof lavas, pyroclastic rocks and the products of a local spattercone dated between 3· 7 ka and AD 79. The data obtainedfrom the study of the borehole show that, before the CampanianIgnimbrite eruption, low-energy explosive volcanism took placein the Vesuvian area, whereas mostly high-energy explosive eruptionscharacterized the Campi Flegrei activity. In the Vesuvian area,Campanian Ignimbrite deposition was followed by the eruptionof a local tuff cone and a long repose time, which predatedthe formation of the Mt. Somma edifice. Since 18· 3 ka(Pomici di Base eruption) the activity of Somma–Vesuviusbecame mostly explosive with rare lava effusions. The shallowestcored deposits belong to the Camaldoli della Torre cone, formedbetween the Pomici di Avellino and Pomici di Pompei eruptions(3· 7 ka–AD 79). New geochemical and Sr–Nd–Pb–B-isotopicdata on samples from the drilled core, together with those availablefrom the literature, allow us to further distinguish the volcanicrocks as a function of both their provenance (i.e. Phlegraeanor Vesuvian areas) and age, and to identify different magmaticprocesses acting through time in the Vesuvian mantle source(s)and during magma ascent towards the surface. Isotopically distinctmagmas, rising from a mantle source variably contaminated byslab-derived components, stagnated at mid-crustal depths (8–10km below sea level) where magmas differentiated and were probablycontaminated. Contamination occurred either with Hercynian continentalcrust, mostly during the oldest stages of Vesuvian activity(from 39 to 16 ka), or with Mesozoic limestone, mostly duringrecent Vesuvian activity. Energy constrained assimilation andfractional crystallization (EC-AFC) modelling results show thatcontamination with Hercynian crust probably occurred duringdifferentiation from shoshonite to latite. Contamination withlimestone, which is not well constrained with the availabledata, might have occurred only during the transition from shoshoniteto tephrite. From the ‘deep’ reservoir, magmas rosetowards a series of shallow reservoirs, in which they differentiatedfurther, mixed, and fed volcanic activity. KEY WORDS: Somma–Vesuvius; crustal contamination; source heterogeneity; radiogenic and stable isotopes; magmatic system  相似文献   

11.
The Campi Flegrei caldera, an active volcanic field in the Campanianprovince, Italy, is a nested structure generated by the CampanianIgnimbrite (37 ka BP) and the Neapolitan Yellow Tuff (12 kaBP) eruptions. Since at least 60 ka BP Campi Flegrei has producedmagmas with variable chemical and Sr isotopic compositions.87Sr/86Sr ratios increase through time from 0·7068 to0·7086, with the highest ratios detected in the least-evolvedshoshonitic products. The origin of this progressive Sr isotopicvariability has been investigated using new Sr, Nd and Pb isotopicdata for volcanic rocks and entrained xenoliths. The data obtainedare combined and discussed with previous geochemical and Srisotope data and used to suggest a multi-stage evolution forthe magmatic system, mainly involving deeper and shallower crustalmagma storage reservoirs. The deeper reservoir is proposed tobe a magma chamber periodically refilled by primitive maficmagmas which subsequently undergo contamination by crustal material.The assimilated crustal material is represented by xenolithsrecovered in the shoshonitic pyroclastic products. Magma batchesoriginating from the deeper reservoir migrated towards the surfaceand fed a shallower complex magmatic system. The deeper chamberwas tapped during the eruption of least evolved magmas by regionalfault systems. In addition to crystal–liquid fractionation,open-system processes occurred in the shallower system. KEY WORDS: Campi Flegrei; crustal contamination; xenoliths  相似文献   

12.
This paper describes an integrated ground deformation and gravity network aimed at monitoring volcano-tectonic movements in the Campanian area (Southern Italy). It covers an area of more than 3000 km2, including the volcanic centres of Somma-Vesuvius, Campi Flegrei caldera and Ischia island. Levelling, EDM and gravity networks, as well as periodic and continuous GPS measurements are carried out. The aim of the network is twofold: monitoring ground deformations in the above mentioned volcanic areas, and studying the complex tectonics of the Campania Plain, a graben-like structure in which the Neapolitan volcanism is concentrated, in relation to the tectonics of the Southern Apennines and of the Tyrrhenian Basin. The monitoring network consists of larger-scale levelling, EDM and GPS networks covering the whole Campania Plain, connected to the relatively stable areas of Apennines, together with smaller scale networks aimed at accurately monitoring the Somma-Vesuvius volcano, one of the most dangerous over the World due to the high degree of urban development. The Somma-Vesuvius is monitored by levelling network, over 200 km long, by periodic EDM and GPS measurements and by a small network of continuously recording GPS receivers. Moreover, high precision gravimetry is also employed to deep the knowledge of the dynamic framework of the area. The main results indicate that Mt. Vesuvius and the island of Ischia are currently quiescent, while Campi Flegrei are subject to significant slow vertical ground movements, known as “bradyseism”. Recently, two large uplifts, both of about 1.8 m, affected the area respectively in 1970–72 and 1982–84.  相似文献   

13.
Focal mechanisms of earthquakes and fault‐slip data have been collected to constrain the strain regime acting in the hydrothermal zone and surrounding areas of the Campanian Plain (southern Italy), a NW–SE elongated structural depression. The NW–SE striking faults bounding the depression move in response to a NE–SW striking regional extension. Within the depression, an extended hydrothermal circulation occurs related to the Vesuvius, Campi Flegrei and Ischia active volcanoes. In this zone, the strike of the extension is N–S. Results from a finite element model constrained by the collected data show that the presence of a lower rigidity zone due to the hydrothermal circulation may explain (a) the observed deflection of the direction of regional extension, and (b) why large magnitude earthquakes occur at the boundaries of the hydrothermal zone and not along the faults delimiting the structural depression.  相似文献   

14.
《Applied Geochemistry》2005,20(3):611-625
This paper presents new data on the baseline concentrations of U, Th and K in 2389 stream sediments over the whole Campania region. These data, based on systematic sampling and analysis, are compared with those obtained by gamma-ray spectrometry surveys.Variations in the U, Th and K concentration in the surficial environment of the Campania region appear to be related to bedrock lithology. Generally, high U, Th and K values in stream sediments correspond well with the occurrence of volcanic rocks in the central-western part of the region, whereas low values are found in areas characterized by silico-clastic and carbonate deposits, occurring mostly in the southern and eastern part of the region. Gamma-ray spectrometry maps show a similar pattern, although the distribution of the highest radioactivity levels define more restricted areas than the ones resulting from mapping stream sediment geochemistry. Particularly high 40K radioactivity levels delimit all the known eruptive centers (Roccamonfina, Campi Flegrei and Somma–Vesuvius), including the fissural sources of Campania Ignimbrites, much better than U and Th radioactivity. One of the concerns for human health in the Campania region is the total gamma radiation and Rn potential related mostly to alkaline volcanics of the Neapolitan volcanological province. In particular, geothermal activity occurring in all the Campanian volcanic areas represents a potential hazard for Rn gas.  相似文献   

15.
The Azores Archipelago is one of the most active volcanic areas in the North Atlantic region. Approximately 30 eruptions have been reported over the last 600 years with some major VEI 5 (Volcanic Explosivity Index) eruptions further back in time. The geochemical composition of associated tephra-derived glass, however, is not well characterized. An Azorean origin of cryptotephras found in distal areas such as North Africa, the British Isles and Greenland has been suggested, but proximal data from the Azores are scarce and the correlations have only been tentative. These tephras have a traychtic composition, which excludes an Icelandic origin. In a previous study, we presented major element analyses of proximal tephra-derived glass from five Holocene eruptions on the Azores Islands. There is a striking geochemical similarity between tephras from volcanoes on São Miguel and Irish cryptotephras, and especially with eruptives from the Furnas volcano. Here we present new analyses of proximal tephras that confirm and strengthen a link between Furnas and cryptotephras found in south-west Ireland. We also suggest a correlation between a previously unsourced tephra found in a Swedish bog with an eruption of the Sete Cidades volcano c. 3880 a cal BP.  相似文献   

16.
We detected late Pleistocene cummingtonite-bearing cryptotephras in loess deposits in NE Japan and correlated them with known tephras elsewhere by using major-element compositions of the cummingtonite. This is the first time cryptotephras have been identified by analysis of a crystal phase rather than glass shards. In central NE Japan, four cummingtonite-bearing tephras, the Ichihasama pumice, the Dokusawa tephra, the Naruko–Nisaka tephra, and the Adachi–Medeshima tephra, are present in late Pleistocene loess deposits. Because the cummingtonite chemistry of each tephra is different and characteristic, it is potentially a powerful tool for detecting and identifying cryptotephras. An unidentified cummingtonite-bearing cryptotephra previously reported to be present in the late Pleistocene loess deposits at Kesennuma (Pacific coast) did not correlate with any of the known cummingtonite-bearing tephras in central NE Japan, but instead with the Numazawa–Kanayama tephra (erupted from the Numazawa caldera, southern NE Japan), although Kesennuma is well beyond the previously reported area of the distribution of the Numazawa–Kanayama tephra. Three new cummingtonite-bearing cryptotephras in the mid and late Pleistocene loess deposits (estimated to be less than 82 ka, 100–200 ka, and ca. 250 ka) on the Isawa upland were also detected.  相似文献   

17.
Potential Hazards of Eruptions around the Tianchi Caldera Lake, China   总被引:8,自引:0,他引:8  
Since the eruption of the Tianchi volcano about 1000 years ago, there have been at least 3 to 5 eruptions of small to moderate size. In addition, hazardous avalanches, rock falls and debris flows have occurred during periods between eruptions. A future eruption of the Tianchi volcano is likely to involve explosive interaction between magma and the caldera lake. The volume of erupted magma is almost in a range of 0.1-0.5 km3. Tephra fallout may damage agriculture in a large area near the volcano. If only 1% of the lake water were ejected during an eruption and then precipitated over an area of 200 km2, the average rainfall would be 100 mm. Moreover, lahars are likely to occur as both tephra and water ejected from the caldera lake fall onto flanks of the volcano. Rocks avalanching into the caldera lake also would bring about grave hazards because seiches would be triggered and lake water with the volume equal to that of the landslide would spill out of the existing breach in the caldera and cause flooding  相似文献   

18.
A study of six tephra layers discovered in different deposits between 1600 and 2700 m a.s.l. in the Apennine chain in central Italy allowed precise stratigraphic constraints on environmental and climatic changes between ca. 4.5 and 3.8 cal ka BP. Chemical analyses allowed the correlation of these tephra layers with the eruptions of Agnano Mt Spina (AMST) from Phlegrean Field and Avellino (AVT) from Somma–Vesuvius. Major environmental changes in the high mountains of the Central Apennines occurred just after the deposition of the AMST and predate the deposition of the AVT. At this time, renewed growth of the Calderone Glacier occurred, marking the onset of the Apennine “Neoglacial”. The presence of the AMST and AVT enabled us to make a precise, physical correlation with other archives in central Italy. Synchronization of records between sites showed that the period intervening the deposition of the AMST and AVT layers coincided with environmental changes that were not always exactly in phase. This highlights the fact that stratigraphic correlations using only radiocarbon chronologies (the most common method used for dating archives during the Holocene) could produce erroneous correlation of events, giving rise to oversimplified paleoclimatic reconstructions.  相似文献   

19.
Shear wave velocities of the lithospheric structure to 73 km depth have been defined along three profiles crossing the Campanian Plain (Southern Italy) from the simultaneous non linear inversion of the local and regional dispersion data. The former consist of group velocity dispersion data obtained from some seismic events which occurred at the borders of the Campanian Plain and recorded at Napoli, and the latter of group and phase dispersion data obtained in previous studies. The main features of the representative VS models are a carbonate basement deepening to ~5 km in the central part of the Plain and a low velocity zone at a depth of ~15 km, rising to 7 km in the southern part, close to Somma-Vesuvio. The low velocity layer can be correlated with that found at ~10 km of depth below Campi Flegrei and the Neapolitan area, and at 5 km below the Somma-Vesuvio caldera area. Such regional velocity reduction can be associated to the presence of a zone with less than 5% partial melting that can be interpreted as magmatic reservoir of the Campanian volcanism.  相似文献   

20.
On the basis of complex studies of tephra layers (morphology of volcanic glass particles, chemical composition of glass particles and minerals, and REE distribution), marker tephra layers (K2, K3) were distinguished in the stratigraphic columns in the area of the Sea of Okhotsk. The areas of distribution of tephra layers and their age datings were determined. Tephra layers are shown to be similar in their chemical composition. They are correlated with strong explosive eruptions in the Nemo caldera complex on Onekotan Island (northern part of the Kuril Islands) in the Late Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号