首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To develop a more precise understanding of Alpine glacier fluctuations during the Holocene, the glacier forefields of the Triftjegletscher and the Oberseegletscher east of Zermatt in the Valais Alps, Switzerland, were investigated. A multidisciplinary approach of detailed geological and geomorphological field mapping combined with 10Be exposure and radiocarbon dating was applied. A total of twelve samples of boulders and bedrock were taken from both Little Ice Age (LIA) landforms, as documented by the Dufour map published in 1862, and from landforms outside of the LIA. The resulting 10Be ages range between 12590 ± 350 a and 420 ± 170 a. A piece of wood found embedded in the Little Ice Age moraine gave radiocarbon ages that range between 293 cal years BP up to modern (356–63 cal years before 2013). Based on these results, four tentative steps of the Holocene evolution could be distinguished. An early Holocene stage, which documents the decay of the Egesen stadial glaciers when the first parts of the study area became ice free. This was followed by a phase with no evidence of glacier advance. Then in the late Holocene, the glaciers advanced (at least) twice. An advance around 1200 a, as shown by several moraine ages, coincides with the Göschenen II cold phase. A more extensive readvance occurred during the LIA as shown on the historical maps and underpinned by one 10Be exposure age and the radiocarbon age. This later advance destroyed or overprinted the earlier landforms in most parts of the area.  相似文献   

2.
Carbon isotopes (δ13C) and C/N ratios from bulk organic matter have recently been used as alternative proxies for relative sea‐level (RSL) reconstruction where there are problems associated with conventional biological indictors. A previous study on a single isolation basin (Upper Loch nan Eala) in northwest Scotland has shown a clear relationship between δ13C, C/N ratios and palaeosalinity from Younger Dryas and Holocene aged sediments. In this paper we present results of δ13C and C/N ratio analyses from other isolation basins in northwest Scotland over the Holocene and the Lateglacial period in order to validate this technique. The results from the Holocene sequences support the earlier findings that this technique can be used to identify RSL change from isolation basins over the Holocene in this region. The relationship between δ13C, C/N ratios and RSL change is not apparent in sediments of Lateglacial age. Other environmental variables such as atmospheric CO2 concentration, poor vegetation development and temperature influence δ13C values during this period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Rock‐slope failures (RSFs) constitute significant natural hazards, but the geophysical processes that control their timing are poorly understood. However, robust chronologies can provide valuable information on the environmental controls on RSF occurrence: information that can inform models of RSF activity in response to climatic forcing. This study uses Schmidt‐hammer exposure‐age dating (SHD) of boulder deposits to construct a detailed regional Holocene chronology of the frequency and magnitude of small rock‐slope failures (SRSFs) in Jotunheimen, Norway. By focusing on the depositional fans of SRSFs (≤103 m3), rather than on the corresponding features of massive RSFs (~108 m3), 92 single‐event RSFs are targeted for chronology building. A weighted SHD age–frequency distribution and probability density function analysis indicated four centennial‐ to millennial‐scale periods of enhanced SRSF frequency, with a dominant mode at ~4.5 ka. Using change detection and discreet Meyer wavelet analysis, in combination with existing permafrost depth models, we propose that enhanced SRSF activity was primarily controlled by permafrost degradation. Long‐term relative change in permafrost depth provides a compelling explanation for the high‐magnitude departures from the SRSF background rate and accounts for: (i) the timing of peak SRSF frequency; (ii) the significant lag (~2.2 ka) between the Holocene Thermal Maximum and the SRSF frequency peak; and (iii) the marked decline in frequency in the late‐Holocene. This interpretation is supported by geomorphological evidence, as the spatial distribution of SRSFs is strongly correlated with the aspect‐dependent lower altitudinal limit of mountain permafrost in cliff faces. Results are indicative of a causal relationship between episodes of relatively warm climate, permafrost degradation and the transition to a seasonal‐freezing climatic regime. This study highlights permafrost degradation as a conditioning factor for cliff collapse, and hence the importance of paraperiglacial processes; a result with implications for slope instability in glacial and periglacial environments under global warming scenarios.  相似文献   

4.
The Göschenertal (Göschenen valley) is the type locality of the so‐called Göschenen Cold Phases I (~3–2.3 ka) and II (~1.8–1.1 ka). According to earlier studies, these Late Holocene climatic cooling periods were characterized by changes in vegetation and pronounced glacier advances. As a peculiarity, the Göschenen Cold Phase I was thought to be connected to a local surge‐type advance of the Chelengletscher (Chelen glacier) – an exceptional event of unparalleled dimension in the European Alps. Based on cosmogenic 10Be exposure ages from moraine boulders, we investigated the local glacier chronology. In contrast to former research, moraines at different positions within the Göschenen valley (central Swiss Alps) have been dated to the Younger Dryas and the Early Holocene. This questions the applicability of palaeo‐Equilibrium Line Altitude (ELA) calculations for stadial attributions without additional numerical age constraints. Furthermore, we have found compelling evidence that the proposed non‐climatic glacier advance attributed to the Göschenen Cold Phase I did not occur. The present results, along with a reappraisal of the original study, question the scientific reliability and the glaciological definition of the Göschenen Cold Phases as glacier advances that clearly exceeded the Little Ice Age positions. While our data do not exclude potential changes in climate and vegetation, we nonetheless show that the Göschenen Cold Phases are not suitable as reference stadials in the system of Alpine Holocene glacier fluctuations.  相似文献   

5.
Measured 18O/16O ratios from the Greenland Ice Sheet Project 2 (GISP2) ice core extending back to 16,500 cal yr B.P. provide a continuous record of climate change since the last glaciation. High-resolution annual 18O/16O results were obtained for most of the current millennium (A.D. 818-1985) and record the Medieval Warm Period, the Little Ice Age, and a distinct 11-yr 18O/16O cycle. Volcanic aerosols depress central Greenland annual temperature (1.5°C maximally) and annual 18O/16O for about 4 yr after each major eruptive event. On a bidecadal to millennial time scale, the contribution of solar variability to Holocene Greenlandic temperature change is 0.4°C. The role of thermohaline circulation change on climate, problematic during the Holocene, is more distinct for the 16,500-10,000 cal yr B.P. interval. (Analogous to 14C age calibration terminology, we express time in calibrated (cal) yr B.P. (A.D. 1950 = 0 cal yr B.P.)). The Oldest Dryas/Bølling/Older Dryas/Allerød/Younger Dryas sequence appears in great detail. Bidecadal variance in 18O/16O, but not necessarily in temperature, is enhanced during the last phase of lateglacial time and the Younger Dryas interval, suggesting switches of air mass transport between jet stream branches. The branched system is nearly instantaneously replaced at the beginning of the Bølling and Holocene (at 14,670 and 11,650 cal yr B.P., respectively) by an atmospheric circulation system in which 18O/16O and annual accumulation initially track each other closely. Thermodynamic considerations of the accumulation rate-temperature relationship can be used to evaluate the 18 O/16O-temperature relationship. The GISP2 ice-layer-count years of major GISP2 climate transitions also support the use of coral 14C ages for age calibration.  相似文献   

6.
The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium‐series dates obtained and subsequently analysed. Sea‐level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age–depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 ± 50 yr bp ; accretion rates average 5·65 m kyr?1. The barrier reef consists of >30 m thick Holocene coralgal and microbial successions. Holocene barrier‐reef growth began 10 030 ± 50 yr bp and accretion rates average 6·15 m kyr?1. The underlying Pleistocene reef formed 116 900 ± 1100 yr bp , i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0·05 to 0·14 m kyr?1. In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sea‐level changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier‐reef systems in Tahiti and Mayotte exhibit more differences than similarities.  相似文献   

7.
The combined Rhone and Aare Glaciers presumably reached their last glacial maximum (LGM) extent on the Swiss Plateau prior to 24 ka. Two well-preserved, less extensive moraine stades, the Gurten and Bern Stade, document the last deglaciation of the Aare Valley, yet age constraints are very scarce. In order to establish a more robust chronology for the glacial/deglacial history of the Aare Valley, we applied 10Be surface exposure dating on eleven boulders from the Gurten and Bern Stade. Several exposure ages are of Holocene age and likely document post-depositional processes, including boulder toppling and quarrying. The remaining exposure ages, however yield oldest ages of 20.7 ± 2.2 ka for the Gurten Stade and 19.0 ± 2.0 ka for the Bern Stade. Our results are in good agreement with published chronologies from other sites in the Alps.  相似文献   

8.
The chronostratigraphy of mostly Holocene sediments in the Northern Negev desert of Israel was studied through amino acid epimerization analysis (alloisoleucine/isoleucine ratio, A/I) of individual land snail shells and 14C analysis of bulk samples of land snail shells contained within the sediments. Analysis of 31 deposits shows a very strong correlation between A/I and 14C age. A/I analyses indicate that age mixtures occur within all colluvial and in some fluvial deposits. Consequently, radiocarbon dates of bulk samples, which give an average age, overestimate the time of deposition. Sedimentation rates were generally rapid in both fluvial and colluvial deposits. Colluviation shows a maximum in the early Holocene and decreases progressively thereafter, in accordance with the change in average rainfall. Accumulation of fluvial sediments shows a distinct mid-Holocene maximum and apparently relates to the interaction between variation in rainfall, extent of bedrock exposure, and vegetation density. Late Holocene fluvial deposition may relate to agricultural activity. The understanding of the chronology of sedimentation is dependent on an integrated approach employing amino acid epimerization analysis to study age variation within a layer and 14C analyses for establishment of an absolute chronology.  相似文献   

9.
关于全新世底界年龄的14C测定   总被引:2,自引:0,他引:2       下载免费PDF全文
根据16个全新统底部14C样品的年龄测定,证明把全新世底界的年龄定在11000aB.P.前后是合适的,但云南几个样品的年龄数据明显偏老一千多年,这可能与纬度有密切关系,因而中国全新世与晚更新世的年龄有随地区而异的现象。因此,我国全新世底界划分仍需要进一步讨论。  相似文献   

10.
The Tepexpan Palaeoindian skeleton was discovered in 1947 close to the former Lake Texcoco margin, in the Basin of Mexico. The find has been the object of considerable interest and discussion over the last 60 years regarding its real age and archaeological interpretation. Here we report new AMS radiocarbon dates associated with the sedimentary succession at Tepexpan with ages between 19,110 ± 90 and 612 ± 22 14C years BP and a new uranium-series date for the skeleton with an age of 4700 ± 200 years BP that indicates a mid Holocene age. The sedimentary succession was studied in detail using: stable isotopes, diatoms, organic geochemistry and tephrochronology. The multi-proxy evidence suggests large changes around the margins of Lake Texcoco in terms of the balance between aquatic and terrestrial plants, C3 and C4 plants, saline, alkaline and freshwater conditions, volcanic activity, marginal reworking of lake sediments and input from the drainage basin through the late Pleistocene–late Holocene. These changes had large impacts on the prehistoric human populations living by the lake shores since the late Pleistocene in the Basin of Mexico.  相似文献   

11.
Research on abrupt paleoclimatic and paleoenvironmental change provides a scientific basis for evaluating future climate. Because of spatial variability in monsoonal rainfall, our knowledge about climate change during the mid-to lateHolocene in southern China is still limited. We present a multi-proxy record of paleoclimatic change in a crater lake, Lake Shuangchi. Based on the age-depth model from 210 Pb, 137 Cs and AMS14 C data, high-resolution mid-to late-Holocene climatic and environmental records were reconstructed using multiple indices(TOC, TN, C/N, δ13 C and grain size). Shuangchi underwent a marked change from a peat bog to a lake around 1.4 kaBP. The C3 plants likely dominated during 7.0–5.9 ka and 2.5–1.4 kaBP, while C4 plants dominated between 5.9–3.2 and 3.0–2.5 kaBP. Algae were dominant sources of organic matter in the lake sediments after 1.4 kaBP. Several intervals with high concentrations of coarser grain sizes might be due to flood events. These results reveal that several abrupt paleoclimatic events occurred around 6.6 ka, 6.1 ka, 5.9 ka, 3.0 ka, 2.5 ka and 1.4 kaBP. The paleoclimatic change recorded in the lake may be related to the migration of the Intertropical Convergence Zone(ITCZ) and El Ni?o-Southern Oscillation(ENSO) activity.  相似文献   

12.
The transition phase from Lateglacial to Holocene climate conditions was accompanied by a pronounced reorganization of climate patterns in the Northern Hemisphere. Evidence of Alpine palaeoglaciers provides a basis for understanding climate downturns during a time of generally warming conditions. In this context a series of well‐preserved and previously undated moraines were investigated in the small Falgin cirque located in the central Alpine Langtaufers Valley (South Tyrol, Italy) and in the neighbouring Hinteres Bergle cirque of the Radurschl Valley (North Tyrol, Austria). Both localities are situated in the driest area of the eastern Alps. They lie well above prominent moraines associated with the Younger Dryas (YD) cold phase and represent the first moraines below Little Ice Age (LIA) positions. The corresponding equilibrium line altitude of the palaeoglaciers in both cirques was 100–120 m lower than during the LIA. Surface exposure dating (10Be) of the inner Falgin moraines shows a mean stabilization age of 11.2±0.9 ka, which is similar to the deglaciation age of 10.9±0.8 ka for the Hinteres Bergle cirque. The ages indicate glacier activity most likely during the earliest Holocene or the YD/Holocene transition. These findings point to a climate with mean summer temperatures about 1.5 °C lower than during the 20th century in the Alps.  相似文献   

13.
We report a new Holocene relative sea‐level curve based on the stratigraphy in five closely located isolation basins near Lista in southernmost Norway. The results detail the progress and timing of the mid‐Holocene Tapes transgression, the peak of which in this region represents the highest postglacial sea level, as well as the rate of land emergence since then. One additional cored basin is situated above the marine limit. All the basins have bedrock sills that were levelled using a differential GPS. Isolation and ingression boundaries were identified by macrofossil analysis and radiocarbon dated on terrestrial plant remains. In most cases several dates were obtained from each transition. Relative sea level rose with a mean rate of 7 mm a?1 during the last part of the Tapes transgression 8600?8200 cal. a BP and then gradually slowed to a mean rate of 1 mm a?1 from 8200?7000 cal. a BP. Mean sea level reached ~5 m higher than the present level when the transgression culminated. Land emergence took place after this, first slowly at a mean rate of 0.4 mm a?1 until ~3900 cal. a BP before it increased to 2.6 mm between 3900 and 3400 cal. a BP. Since then it has slowly decreased until today and has been ~0.2 mm a?1 for the last 2000 years. Based on the new curve we present updated Tapes isobases for the region that are displaced by ~20 km in relation to the existing model. From one basin we also report a 5–10 cm thick layer of sorted, sandy gravel, embedded in a more than 5‐m‐thick deposit of homogeneous shallow‐marine mud. The gravel was deposited ~5500 cal. a BP, which is the same age as a tsunami deposit previously mapped in Shetland. As several typical characteristics of tsunami facies deposits are lacking, the origin of the gravel layer remains inconclusive.  相似文献   

14.
We present a record of monsoon variations for the early and middle Holocene that is inferred from the geochemistry of sediment cores from Ahung Co, a lake in central Tibet. The resolution of this record is better than 50 yr and the age model is derived from radiocarbon ages of terrestrial charcoal, which eliminates errors associated with the lake hard-water effect. We made down-core geochemical measurements of % carbonate, % organic carbon, C/N and δ13C of bulk organic matter, δ13C and δ18O of carbonate, and % dolomite. Proxy calibration and modern water-balance reconstruction show that these are proxies for lake depth and the amount of monsoon precipitation. We find that lake level and monsoon precipitation have been decreasing at Ahung Co since the early Holocene (∼7500 cal yr B.P.). Superimposed on this trend are rapid declines in monsoon rainfall at 7000-7500 and 4700 cal yr B.P. and seven century-scale wet-dry oscillations. The cores do not contain sediment from the last ∼4000 yr. Surface sediments from the lake accumulated during the 20th century, however. From this, we argue that lake levels have risen again recently following a late Holocene dry period.  相似文献   

15.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Holocene pollen and diatom analyses and complementary data from δ18O and δ13C, malacology and sedimentology have provided a detailed record of vegetation history and palaeoenvironmental change at arroyo Las Brusquitas, on the southeastern coast of the pampas of Argentina especially in relation to past sea levels. Holocene palaeosalinity trends were estimated by Detrended Correspondence Analysis and by salinity indexes based on pollen and diatom data. As a consequence of sea‐level rise from the postglacial an extensive wave‐cut platform formed over which Holocene infilling sequences were deposited unconformably. In these sequences, variation in pollen and diatom assemblages occurred in agreement with changes in mollusc diversity and abundance, isotope values, and sediment deposits. Between ca. 6700 and 6190 14C yr BP (6279–6998 cal. yr BP) saline conditions predominated in an environment highly influenced by tides and salt water during the Holocene sea‐level highstand. Between ca. 6200 and 3900 14C yr BP (4235–4608 cal. yr BP) shallow brackish water bodies formed surrounded by saltmarsh vegetation that became more widespread from 5180 14C yr BP (5830–6173 cal. yr BP) to 3900 14C yr BP in relation to a sea‐level stabilisation period within the regression phase. Less saline conditions marked by frequent variations in salinity predominated between ca. 3900 and 2040 yr 14C BP (1830–2160 cal. yr BP). The intertidal saltmarsh environment changed into a brackish marsh dominated by freshwater conditions and sporadic tidal influence. Halophytic vegetation increased towards ca. 200014C yr BP indicating that saline conditions may be due to either desiccation or an unusually high tide range with rare frequency. After ca. 2000 14C yr BP the sedimentary sequences were buried by aeolian sand dunes. Changes in Holocene vegetation and environments in Las Brusquitas area are in agreement with data obtained from various southeastern coastal sites of the Pampa grasslands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Peatland of the eastern Qinghai–Tibetan Plateau lies at the convergence of the East Asian and Indian monsoon systems in eastern Asia. To understand the evolution of this peatland and its potential to provide new insights into the Holocene evolution of the East Asian monsoon a 6 m peat core was collected from the undisturbed central part of a peat deposit near Hongyuan. The age-depth profile was determined using 16 14C-AMS age dates, the peat analysed for a range of environmental variables including carbon, nitrogen and hydrogen concentration, bulk density, δ13C and the associated spring water analysed for hydrogen and oxygen isotopes. The age-depth profile of the recovered peat sequence covers the period from 9.6 to 0.3 kyr BP and is linear indicating that the conditions governing productivity and decay varied little over the Holocene. Using changes in carbon density, organic carbon content and its δ13C, cold dry periods of permafrost characterised by low density and impeded surface drainage were identified. The low δ18O and δD values of the spring water emanating around the peat deposit, down to ?13.8 and ?102‰ (VSMOW), respectively, with an inverse relationship between electrical conductivity and isotopic composition indicate precipitation under colder and drier conditions relative to the present day. In view of the current annual mean air temperature of 1 °C this suggests conditions in the past have been conducive to permafrost. Inferred periods of permafrost correspond to independently recognised cold periods in other Holocene records from across China at 8.6, 8.2–7.8, 5.6–4.2, 3.1 and 1.8–1.5 kyr BP. The transition to a cold dry climate appears to be more rapid than the subsequent recovery and cold dry periods at Hongyuan are of longer duration than equivalent cold dry periods over central and eastern China. Light–dark banding peat on a scale of 15–30 years from 9.6 to 5.5 kyr BP may indicate a strong influence of decadal oscillations possibly the Pacific Decadal Oscillation and a potential link between near simultaneous climatic changes in the northwest Pacific, ENSO, movement of the Intertropical Convergence Zone and the East Asian Monsoon.  相似文献   

18.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Under changing climatic conditions permafrost peatlands can play an important role in the global carbon budget through permafrost carbon feedbacks and shifts in carbon assimilation. To better predict future dynamics in these ecosystems an increased understanding of their Holocene carbon and permafrost history is needed. In Tavvavuoma, northern Sweden, we have performed detailed analyses of vegetation succession and geochemical properties at six permafrost peatland sites. Peatland initiation took place around 10 000 to 9600 cal. a BP, soon after retreat of the Fennoscandian Ice Sheet, and the peatlands have remained permafrost‐free fens throughout most of the Holocene. At the four sites that showed a continuous accumulation record during the late Holocene radiocarbon dating of the shift from wet fen to dry bog vegetation, characteristic of the present permafrost peatland surface, suggests that permafrost developed at around 600–100 cal. a BP. At the other two sites peat accumulation was halted during the late Holocene, possibly due to abrasion, making it more difficult to imply the timing of permafrost aggradation. However also at these sites there are no indications of permafrost inception prior to the Little Ice Age. The mean long‐term Holocene carbon accumulation rate at all six sites was 12.3±2.4 gC m−2 a−1 (±SD), and the mean soil organic carbon storage was 114±27 kg m−2.  相似文献   

20.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号