首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

2.
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.  相似文献   

3.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   

4.
Whole rock major and trace element and Sr-, Nd- and Hf-isotope data, together with zircon U-Pb, Hf- and O-isotope data, are reported for the Nb-Ta ore bearing granites from the Lingshan pluton in the Southeastern China, in order to trace their petrogenesis and related Nb-Ta mineralization. The Lingshan pluton contains hornblende-bearing biotite granite in the core and biotite granite, albite granite and pegmatite at the rim. In addition, numerous mafic microgranular enclaves occur in the Lingshan granites. Zircon SIMS U-Pb dating gives consistent crystallization ages of ca. 132 Ma for the Lingshan granitoids and enclaves, consistent with the Nb-Ta mineralization age of ∼132 Ma, indicating that mafic and felsic magmatism and Nb-Ta mineralization are coeval. The biotite granites contain hornblende, and are metaluminous to weakly peraluminous, with high initial 87Sr/86Sr ratios of 0.7071–0.7219, negative εNd(t) value of −5.9 to −0.3, εHf(t) values of −3.63 to −0.32 for whole rocks, high δ18O values and negative εHf(t) values for zircons, and ancient Hf and Nd model ages of 1.41–0.95 Ga and 1.23–1.04 Ga, indicating that they are I-type granites and were derived from partial melting of ancient lower crustal materials. They have variable mineral components and geochemical features, corresponding extensive fractionation of hornblende, biotite and feldspar, with minor fractionation of apatite. Existence of mafic microgranular enclaves in the biotite granites suggests a magma mixing/mingling process for the origin of the Lingshan granitoids, and mantle-derived mafic magmas provided the heat for felsic magma generation. In contrast, the Nb-Ta mineralized albite granites and pegmatites have distinct mineral components and geochemical features, which show that they are highly-fractionated granites with extensive melt and F-rich fluid interaction in the generation of these rocks. The fluoride-rich fluids induce the enrichment in Nb and Ta in the highly evolved melts. Therefore, we conclude that the Nb-Ta mineralization is the result of hydrothermal process rather than crystal fractionation in the Lingshan pluton, which provides a case to identify magmatic and hydrothermal processes and evaluate their relative importance as ore-forming processes.  相似文献   

5.
东昆仑造山带花岗岩中广泛发育暗色微粒包体,含有丰富的壳幔岩浆混合作用的证据,被认为是研究岩浆混合作用的天然场所。适逢近阶段同源花岗岩谱系填图方案在造山带岩浆混合(浆混)花岗岩图区实践时深受质疑,本研究以东昆仑加鲁河地区浆混花岗岩为例,开展浆混花岗岩区专题填图试点工作,旨在探索一套适合浆混花岗岩填图的岩石单位划分方案。从野外地质、岩相学、岩石和矿物化学等不同角度论证了加鲁河花岗闪长岩及其内部包体形成于开放体系下的壳幔岩浆混合作用。在填图工作中,将图区内的岩浆岩划分为浆混花岗岩和非浆混花岗岩2个超单元。以岩浆混合作用为理论依据,将浆混花岗岩超单元划分为基性端元、酸性端元和浆混产物3个二级单位,对于2个端元岩石单位按照其矿物组成、结构构造等方面的差异(岩浆演化导致)再次划分最基本岩石单位——侵入体,对于浆混产物单位,建议可按照岩浆混合程度差异或者内部包体变化规律灵活划分基本岩石单位——浆混体。由此建立了一套可与同源花岗岩谱系单位相兼容的浆混花岗岩谱系单位划分方案,为岩浆混合花岗岩区开展填图工作提供了初步探索方案。  相似文献   

6.
Early Proterozoic Dongargarh granite complex of Central India, intruding the tonalitic to granodioritic Amgaon gneisses and the Nandgaon Group bimodal volcanic suite, comprises three different textural and compositional types, viz., porphyritic granodiorite (PG), coarse equigranular granite (EG) and microgranite (MG). Synplutonic mafic dykes are common in the granite complex. The PG is characterised by rapakivi texture and the EG is the dominant facies and exhibits sporadically developed rapakivi texture. Microgranular enclaves are common in the EG while they are rare in PG. Major and trace element geochemistry of PG shows marked I- type and some occasional A-type granite characters unusual for a rapakivi granite while the EG shows A-type granite signatures. The field, petrographic, chemical and isotopic data of these granites suggest their derivation by mixing of mantle derived basic magma with a crustal-derived partly crystalline granitic magma. Episodic mafic magma underplating caused the anatexis of the Archaean lower continental crust in a continental margin tectonic setting resulting first in the formation of the I-type granodiorite followed by A-type granite. The I-type granodiorite is mixed with the basic magma (synplutonic dykes) while the EG is formed by mingling of A- type granite magma and the intruding basic magma.  相似文献   

7.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   

8.
The Zhongchuan district is an important component of the metallogenic belt in the Western Qinling. The Zhongchuan granite pluton occurring in the centre of the Zhongchuan metallogenic area has been poorly constrained, though the Triassic granite in Western Qinling has been well documented. In‐situ zircon U–Pb ages, Hf isotopic compositions and whole‐rock geochemical data are presented for host granite and mafic microgranular enclaves (MMES) from the Zhongchuan pluton, in order to constrain its sources, petrogenesis and tectonic setting of the pluton. The distribution of major, trace and rare earth elements apparently reflect exchange between the MMES and the host granitic rocks mainly due to interactions between coeval felsic host magma and mafic magma. The zircon U–Pb age of host granite (231.6 ± 1.5 to 235.8 ± 2.3 Ma) has overlapping uncertainty with that of the MMES (236.6 ± 1.3 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the MMES (εHf(t) = −13.4 to 4.0) is distinct from the host granite (εHf(t) = −15.7 to 0.0), indicating that both enriched subcontinental lithosphere mantle (SCLM) and crustal sources contributed to their origin. The zircons have two‐stage Hf model ages of 1064 to 1798 Ma for the host granite and 858 to 1747 Ma for the MMES. This suggests that the granitic pluton was likely derived from partial melting of a Late Mesoproterozoic crust, with subsequent interaction with the SCLM‐derived mafic magmas in tectonic affinity to the South China Block. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
张媛媛  蔡丽斌  金巍  刘婷  郑培玺  李婧 《岩石学报》2016,32(9):2867-2880
辽西兴城钓鱼台地区分布一套花岗质杂岩,是新太古代"绥中花岗岩"的重要组成部分。花岗质杂岩以似斑状花岗闪长岩和石英闪长岩为主,少量细粒黑云闪长岩(包体)及脉状花岗岩,各类岩石接触关系明确,本文定义为"钓鱼台花岗岩"。锆石U-Pb同位素测试结果显示似斑状花岗闪长岩、石英闪长岩、脉状花岗岩的形成年龄分别为2538±20Ma、2476±56Ma、2470±18Ma,同为新太古代末期热事件的产物。通过该花岗岩组合的宏观-微观组构解析表明,似斑状花岗闪长岩表现为均匀块状构造,具有深熔花岗质岩浆的典型堆晶结构;细粒黑云闪长岩为细粒结构,呈小型暗色包体分布在似斑状花岗闪长岩中,包体的塑性变形、捕掳晶、淬冷边及反向脉等组构发育,具有铁镁质基性岩浆加入同深熔花岗闪长岩并快速冷却的特征;暗色的石英闪长岩主要分布在似斑状花岗闪长岩之下,接触带附近似斑状花岗闪长岩中的钾长石变斑晶明显增多,显示闪长质岩浆"底垫"侵位加热的特征;脉状花岗岩同时穿切似斑状花岗闪长岩和石英闪长岩,具有熔体富集脉体的结构特征。各类岩石中变形组构均不发育。钓鱼台花岗岩记录了新太古代末期地壳深熔和壳幔相互作用过程,岩石组构研究表明新太古代地壳再造作用是一个"静态"多期次的缓慢深熔过程,伴有同期幔源基性物质加入并混合,以及随后大规模的基性岩浆底侵。由此推断钓鱼台花岗岩形成的构造背景为幔源岩浆垂向底侵过程,可能是与俯冲带关联不明显的岩浆弧环境。  相似文献   

10.
华北地块北缘西段巴音诺尔公—狼山地区的牙马图岩体以二长花岗岩为主,岩体中广泛发育岩浆暗色包体,二者界线明显。包体为岩浆结构,大多数具有塑性外形,发育淬冷边、反向脉,存在多种不平衡结构和矿物组合,如斜长石环带、石英眼斑、针状磷灰石等,显示岩浆混合特征;包体的SiO2含量为48.40%~55.40%,寄主花岗岩SiO2含量为65.03%~72.85%,具有明显的SiO2含量间隔;与寄主花岗岩相比,包体的Fe、Mg、Ca、Ti含量较高;包体和寄主花岗岩的主要氧化物之间具有很好的线性关系,微量元素和稀土元素特征相似。包体和寄主花岗岩的这些地球化学特征显示出明显的岩浆混合趋势。岩相学和元素地球化学特征表明暗色包体是基性岩浆侵入到酸性岩浆淬冷的产物,牙马图岩体存在两种岩浆的混合作用。  相似文献   

11.
王超  刘良  张安达  杨文强  曹玉亭 《岩石学报》2008,24(12):2809-2819
阿尔金造山带南缘玉苏普阿勒克塔格岩体中的似斑状中粗粒黑云钾长花岗岩发育有岩浆成因的暗色包体,并且该花岗岩被花岗细晶岩呈脉状侵入。该岩体含有丰富的岩浆混合作用特征: 如暗色包体中的碱性长石斑晶、针状磷灰石、长石的环斑结构、石英/斜长石主晶和榍石眼斑等。暗色包体、寄主花岗岩和花岗细晶岩代表了岩浆混合演化过程中不同端元比例混合的产物。地球化学特征上,钾长花岗岩和暗色包体的主要氧化物含量在Harker图解中多呈线性变化。暗色包体主要为闪长质,MgO、K2O含量高,为钾玄岩系列,总体上高场强元素不亏损,显示了岩浆混合中的基性端元信息,可能为幔源熔体结晶分异或壳幔物质的混合产物。寄主花岗岩均为准铝质,富碱,为高钾钙碱性系列,亏损Nb、Ta、Sr、P、Ti等高场强元素,高K2O/Na2O,富集高不相容元素,Ga含量高,显示了A型花岗岩的特征,Th/U 和Nb/Ta比值分别介于为6.67~10.96、8.99~11.94,代表了下地壳源区。花岗细晶岩均为钠质、过铝质,TiO2、MgO含量低, Na2O和CaO含量高,具有混合岩浆侵位后分异的特征。岩相学和地球化学特征说明岩浆混合作用对于环斑结构花岗岩的形成起到重要作用。花岗细晶岩中环斑长石的斜长石外环与钾长石内核的厚度比大于钾长花岗岩中的环斑长石,指示混合岩浆在一定的减压条件下更有利于环斑结构的形成。玉苏普阿勒克塔格岩体中的钾玄质暗色包体、高钾钙碱性花岗岩和中钾钙碱性花岗细晶岩代表了岩浆演化不同阶段的产物,反映了一个幔源岩浆和下地壳不断相互作用,引起地壳连续伸展减薄的过程,指示阿尔金南缘在早古生代末期存在造山后伸展背景下的幔源岩浆底侵作用。同一岩体中两种不同时代岩性的环斑结构显示了该岩体形成历史中的一定时空演化关系,代表了伸展过程中不同阶段的产物。  相似文献   

12.
叶茂  赵赫  赵沔  舒珣  张若曦  杨水源 《岩石学报》2017,33(3):896-906
灵山花岗岩体在平面上为一环状分布的侵入体,中心为角闪石黑云母花岗岩,外围为黑云母花岗岩。在角闪石黑云母花岗岩中分布有大量的暗色镁铁质微粒包体。黑云母是大多数中酸性火成岩中比较重要的一种镁铁质矿物,它能很好地反映寄主岩浆的属性和成岩时的物理、化学条件,因此,本文对这两种花岗岩及镁铁质微粒包体中的黑云母开展了系统的岩相学观察和电子探针化学组成研究,探讨灵山岩体的物质来源、成岩条件和岩浆的混合作用过程。研究结果表明两种花岗岩体的黑云母具有不同化学成分,而暗色镁铁质微粒包体中黑云母的化学成分则变化较大。三种黑云母均在低氧逸度条件下晶出。两种花岗岩中的黑云母均富Fe贫Mg,属于铁质黑云母,含铁系数[(Fe~(3+)+Fe~(2+))/(Fe~(3+)+Fe~(2+)+Mg~(2+))]分别为0.65~0.70,0.72~0.78,FeOT/MgO均接近7.04。MF值[2×Mg/(Fe~(2+)+Mg+Mn)]分别为0.64~0.76和0.48~0.60,指示两种花岗岩的物质来源都是以壳源为主。镁铁质微粒包体中黑云母的MF值变化范围比较大,为0.63~1.06,为铁质黑云母到镁质黑云母,暗示包体岩浆经历过不同程度的岩浆混合作用。镁铁质微粒包体中部分黑云母与角闪石黑云母花岗岩中黑云母的结晶条件相似,而部分则有明显差异,推测是由于基性的镁铁质包体岩浆注入到酸性的花岗岩浆是一个连续多阶段的过程。  相似文献   

13.
香加南山花岗岩基位于东昆仑造山带东段,岩基主要岩石类型为花岗闪长岩。千瓦大桥-加鲁河一带花岗岩体为香加南山岩基的重要组成部分。香加南山花岗岩基含大量暗色微粒包体,包体中捕掳晶丰富。千瓦大桥-加鲁河一带花岗岩体寄主岩中斜长石和暗色微粒包体中捕掳晶斜长石具正常环带,An值震荡变化,角闪石和黑云母Mg O含量和Mg#值较低,具壳源特征;暗色微粒包体中基质斜长石具核边结构,核部和边部An值存在间断,角闪石和黑云母Mg O含量和Mg#值较高,具幔源特征。LA-ICP-MS锆石U-Pb同位素定年结果显示千瓦大桥花岗闪长岩、暗色微粒包体和加鲁河辉长岩的结晶年龄分别为251.0±1.9Ma、252.8±3.0Ma和221.4±3.3Ma。千瓦大桥花岗闪长岩和加鲁河花岗闪长岩富集轻稀土元素(LREE)和大离子亲石元素(LILE),亏损高场强元素(HFSE),具较低的Mg#和Nb/Ta比值;从千瓦大桥到加鲁河花岗闪长岩呈现出由准铝质中钾钙碱性系列向准铝-弱过铝质中钾-高钾钙碱性系列演化;暗色微粒包体和加鲁河辉长岩轻重稀土元素分异程度相对较低,具较高的Mg#和Nb/Ta比值。千瓦大桥花岗闪长岩和加鲁河花岗闪长岩分别为古特提斯演化俯冲阶段和后碰撞阶段幔源岩浆底侵新生地壳使其部分熔融产物。镁铁质岩浆注入长英质岩浆的混合作用形成了暗色微粒包体。岩浆混合过程中,如果岩浆不完全混合,混合岩浆中混入物质除了长英质岩浆的残留岩浆和捕掳晶,还应该有镁铁质岩浆与长英质岩浆之间的元素梯度差导致的物质扩散;如果岩浆为近完全混合,混合岩浆近似为镁铁质岩浆和长英质岩浆以一定比例二元混合。东昆仑东段晚古生代-早中生代幔源岩浆对花岗质岩浆的影响是一个持续的过程,从俯冲阶段早期流体交代地幔熔融,到俯冲阶段后期板片断离,然后同碰撞阶段板片断离的持续影响,再到后碰撞阶段加厚地壳的拆沉作用,由于地球动力学体制不同,导致幔源岩浆影响的大小和特征不同。  相似文献   

14.
陈兵  熊富浩  马昌前  陈越  黄虎 《地球科学》2021,46(6):2057-2072
壳-幔岩浆相互作用如何影响长英质火成岩的岩石学多样性是当前岩石学研究的焦点问题之一.以岩石类型丰富的东昆仑白日其利长英质岩体和暗色微粒包体为研究对象,开展系统的锆石U-Pb年代学、矿物学、全岩元素地球化学和Sr-Nd-Hf同位素研究,探讨和解析这一重要科学问题.LA-ICPMS锆石U-Pb年代学研究表明,暗色微粒包体(247.8±2.0 Ma)与二长花岗岩(247.5±1.4 Ma)、花岗闪长岩(248.8±2.1 Ma)和石英闪长岩(248.8±1.5 Ma)均侵位结晶于早三叠世.岩相学和矿物学研究表明,白日其利长英质岩石与包体的成因机制与壳-幔岩浆的机械或化学混合作用密切相关.元素地球化学和Sr-Nd-Hf同位素组成研究揭示,幔源镁铁质岩浆端元起源于受俯冲板片流体交代的富集地幔熔融,而壳源长英质岩浆端元则起源于东昆仑古老的变质杂砂岩基底.岩石成因分析揭示,幔源镁铁质岩浆侵入长英质晶粥岩浆房,促使长英质晶粥发生活化,随后壳-幔岩浆端元以不同比例和不同方式发生机械和化学混合等相互作用,从而形成镁铁质岩墙、包体、石英闪长岩和花岗闪长岩等多种岩石类型.晶粥状态下壳-幔岩浆相互作用是控制东昆仑长英质火成岩多样性和大陆地壳生长演化的重要方式.   相似文献   

15.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

16.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   

17.
在华南东部浙闽沿海一带普遍发育有大量晚中生代花岗质岩体及其中的暗色包体,这些岩体被认为是大规模壳幔相互作用和岩浆混合作用的产物。本文对浙东天台地区白鹤岩体中的寄主花岗岩及其中发育的暗色包体分别进行了LA-ICP-MS锆石U-Pb定年和详细的岩石地球化学研究,其锆石U-Pb年龄分别为(120.4±1.2)Ma和(120.6±1.1)Ma,属浙东燕山期侵入活动集中的早白垩世中晚期产物。岩石地球化学特征显示,寄主花岗岩为高硅、富碱、弱过铝质的高钾钙碱性花岗岩,具有较强的Eu负异常,富集Rb、Th、U、K,并有Sr、Ba、P、Ti、Nb、Ta等元素的亏损,岩石成因为高分异I型花岗岩;暗色包体多为低硅、富钠、偏铝质低钾拉斑玄武系列岩石,轻稀土富集、重稀土亏损,并具有弱的Eu正异常。锆石Hf同位素组成表现出不同物质来源(壳幔混源)花岗岩类岩石的特点。综合年代学及岩石地球化学特征,认为浙东地区早白垩世I型花岗岩及其暗色包体是在燕山期弧后碰撞伸展引张的构造背景下,由底侵的幔源岩浆与其诱发熔融的深部壳源岩浆经混合后,经过一定程度的分异演化,最后定位于浅成环境的产物。  相似文献   

18.
The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (εNd = + 3.0) of plutons in the region whereas the mafic lithologies have Nd isotopic compositions (εNd = + 3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional exchange between the contemporaneous mafic magmas and the host granite to explain highly variable alkali contents. The felsic enclaves have relatively low Nd isotopic compositions (εNd = + 2 – + 1) indicative of the involvement of a third, lower εNd melt during granite petrogenesis, perhaps represented by pristine granitic dikes contemporaneous with the nearby Pleasant Bay Layered Intrusion. The dikes at Pleasant Bay and the felsic enclaves at Gouldsboro likely represent remnants of the silicic magmas that originally fed and replenished the overlying granitic magma chambers. The large isotopic (and chemical) contrasts between the enclaves and granitic dikes and granitic magmas may be in part a consequence of extended interactions between the granitic magmas and co-existing mafic magmas by mixing, mingling and diffusion. Alternatively, the granitic magmas may represent an additional crustal source. Using granitic rocks such as these with abundant evidence for interactions with mafic magmas complicate their use in constraining crustal sources and tectonic settings. Fine-grained dike rocks may provide more meaningful information, but must be used with caution as these may also have experienced compositional changes during mafic–felsic interactions.  相似文献   

19.
In the current study, an integration of Enhanced Thematic Mapper Plus (ETM+), field, and laboratory data have been used for lithological mapping of different granitic phases in the Kadabora area, Eastern Desert, Egypt. Application of enhancement techniques, including a new proposed band ratio combination (ratio 5/3, 3/1, 7/5 in RGB, respectively) and supervised classification images are used in discriminating different granitic phases in the Kadabora pluton from each other and from their environs. The data have been proved with the help of field and geochemical investigations. The results revealed that: (1) the Kadabora granitic pluton could be distinguished into three phases that recognized by field and laboratory investigation including granodiorite (phase I), monzogranite (phase II), and syeno-alkali feldspar granite (phase III). These phases are arranged according to their relative ages while the country rocks include ophiolitic mélange and metagabbro–diorite complex. It is also confirmed that the granitic pluton is invaded by dyke swarms which is trending in N–S direction. Geochemically, results show that the granodiorite is calc-alkaline, I-type and formed under subduction tectonic regime. Monzogranite falls within the alkaline and highly fractionated calc-alkaline granites, whereas syeno-alkali feldspar granite extends into proper alkaline granitoids field. Monzogranite and syeno-alkali feldspar granite belong to the A2-subtype granite. This A2-subtype granite was probably formed in an extensional regime, subsequent to subduction which can lead to tensional break-up of the crust (i.e., post-collisional, post-orogenic granites). The monzogranite and the syeno-alkali feldspar granite were probably formed by partial melting of relatively anhydrous lower crust source and/or tonalite to granodiorite is viable alternative to the granulite source.  相似文献   

20.
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε_(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号