首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Applications of Kolmogorov's universal equilibrium hypothesis and the Taylor transform to velocity spectra derived from measurements within the low frequency portion of the atmospheric surface layer (ASL) inertial subrange are examined. The measured ratios of lateral to longitudinal velocity component spectra exhibit considerable scatter, but suggest convergence towards 1.0 rather than towards the 4/3 expected from theory. Shear and buoyancy introduce anisotropy to the inertial subrange, thereby contributing to the observed scatter. The apparent discrepancy between the 4/3 velocity component spectrum ratio expected from theory and the measurements could arise as a consequence of the processing used to produce spectra. These processing effects must be considered from the perspective of the propagating eddy. Spectral averaging used with sonic anemometer data is done over time periods that are large with respect to inertial subrange eddy correlation decay times. This averaging causes energy from larger scale eddies to appear as `local convection' that dominates the Taylor transform. Spectrum ratio convergence and cospectra approaching zero are necessary, but not sufficient, conditions for onset of local isotropy. Measurements of spectrum ratios and cospectra over the entire inertial subrange are needed to determine whether or not local isotropy might occur within the ASL.  相似文献   

2.
Triaxial sonic anemometer velocity and temperature measurements were used to investigate the local structure of the velocity and temperature fluctuations in the unstable atmospheric surface layer above a grass-covered forest clearing. Despite the existence of a 2/3 power law in the longitudinal velocity (2 decades) and temperature (1 decade) structure functions, local isotropy within the inertial subrange was not attained by the temperature field, although a near-isotropic state was attained by the velocity field. It was found that sources of anisotropy were due to interactions between the large-scale and small-scaleeddy motion, and due to localvelocity-thermal interactions. Statistical measures were developed and used to quantify these types of interactions. Other types of interactions were also measured but were less significant. The temperature gradient skewness was measured and found to be non-zero in agreement with other laboratory flow types for inertial subrange scales. Despite these interactions and anisotropy sources in the local temperature field, Obukhovs 1949hypothesis for the mixed velocity-temperature structure functions was found to be valid. Finally, our measurements show that while a 2/3 power-law in the longitudinal velocity structure function developed at scales comparable to five times the height from the ground surface (z), near-isotropic conditions wereachieved at scales smaller than z/2.  相似文献   

3.
An investigation into high Reynolds number turbulent flow over a ridge top in New Zealand is described based on high-resolution in-situ measurements, using ultrasonic anemometers for two separate locations on the same ridge with differing upwind terrain complexity. Twelve 5-h periods during neutrally stratified and weakly stable atmospheric conditions with strong wind speeds were sampled at 20 Hz. Large (and small) turbulent length scales were recorded for both vertical and longitudinal velocity components in the range of 7–23 m (0.7–3.3 m) for the vertical direction and 628–1111 m (10.5–14.5 m) for the longitudinal direction. Large-scale eddy sizes scaled to the WRF (Weather Research and Forecasting) numerical model simulated boundary-layer thickness for both sites, while small-scale turbulent features were a function of the complexity of the upwind terrain. Evidence of a multi-scale turbulent structure was obtained at the more complex terrain site, while an assessment of the three-dimensional isotropy assumption in the inertial subrange of the spectrum showed anisotropic turbulence at the less complex site and evidence of isotropic turbulence at the more complex site, with a spectral ratio convergence deviating from the 4/3 or unity values suggested by previous theory and practice. Existing neutral spectral models can represent locations along the ridge top with simple upwind complexity, especially for the vertical wind spectra, but sites with more orographic complexity and strong vertical wind speeds are often poorly represented using these models. Measured spectra for the two sites exhibited no significant diurnal variation and very similar large-scale and small-scale turbulent length scales for each site, but the turbulence energy measured by the variances revealed a strong diurnal difference.  相似文献   

4.
Wavelet and quadrant analyses were applied to turbulent velocity data in order to investigate the transition from the anisotropy of energy-containing eddies to the isotropy of the inertial subrange scales. The quadrant analysis of the wavelet coefficients of longitudinal and vertical velocity components allows the evaluation of the velocity structure functions and the momentum cospectrum as a function of the separation distance and of the quadrants. In an isotropic condition the contribution both of ejections and sweeps (even quadrants), and both of reflections and deflections (odd quadrants), has to be equal. The analysis has shown that in neutrally stratified conditions the transition to isotropy occurs in a frequency range (0.2 < r/z < 3) usually referred to as internal to the inertial subrange (r is separation distance, z is height). In the transition region, as in the isotropic region, the velocity structure functions still agree with the 1941 and 1962 Kolmogorov theories; but on the other hand the structure functions of the even and odd quadrants are fitted by power laws of different slopes in the transition region. The proposed analysis allows the investigation within the transition region of the different dynamical structure in the energy transfer from the energy-containing scales to the isotropic scales.  相似文献   

5.
Spectra and co-spectra of the streamwise (u) and normal or vertical (w) velocity fluctuations have been measured in the inner region of a large Reynolds number laboratory boundary layer over a rough wall. There is reasonable evidence of ak 1 –1 range in theu spectrum (wherek 1 is the streamwise wavenumber). Such a range results from an overlap between a spectral region dominated by largescale, inactive motion, which scales on the boundary-layer thickness, and a region dominated by smaller-scale, active motion which scales on the distance from the wall. Spectra ofw, anduw cospectra, scale in a manner consistent with the dominance by active motion. The present spectral data do not support local isotropy over the inertial subrange. A comparison between measuredw spectra and calculations based on isotropy indicates that the inertial subrange anisotropy is only slightly affected by the magnitude of the non-dimensional mean shear.  相似文献   

6.
The inertial dissipation technique has been successfully employed for many years to measure the wind stress, especially over the open ocean. This method is based on Kolmogorov's theoretical prediction of universality in the inertial wavenumber range. The theory was developed under the assumption of locally isotropic turbulence, and the dissipation technique has been criticized as lacking justification in a boundary-layer shear flow. In this paper, Kolmogorov's theory is explicitly applied to the anisotropic conditions prevailing in the atmosphere. It is shown that the inertial dissipation method relies on the homogeneity and isotropy of the spectrum ii(k) for k in the inertial range. This is a weaker condition than Kolmogorov's assumption of isotropy of the correlation function Bij(r). In high-Reynolds-number shear flows, isotropy of ii(k) is realized to a good approximation, whereas isotropy of Bij(r) is not. Some consequences for the experimental implementation are discussed; in particular, sampling times (block lengths) not exceeding the order of the eddy life time are recommended in the calculation of spectra.  相似文献   

7.
Orthonormal wavelet expansions are applied to surface-layer measurements of vertical wind speed under various atmospheric, stability conditions. The orthonormal wavelet transform allows for the unfolding of these measurements into space and scale simultaneously to reveal the large intermittent behavior in space for the turbulent production wavenumbers. Both Fourier and wavelet power spectra indicated the existence of a –1 power law for the vertical velocity measurements at the production wavenumbers. The –1 power law in the turbulent production range was derived from surface-layer similarity theory. A dimensionless skewness, structure function is applied to the wavelet decomposed vertical velocity field to trace the destruction of the shear-or buoyancy-induced anisotropy under various stability conditions. The structure skewness function revealed shear- or buoyancy-induced eddy asymmetry dependence on stability at each scale within the –1 power-law wavenumber range with more isotropy during propagation from smaller to larger wavenumbers. The asymmetry of these events at the turbulent production wavenumbers appeared very localized in space, as well as in scale, and could be described with a simple eddy-overturning model. It is demonstrated that the wavelet transform is suitable for such analysis.  相似文献   

8.
Experimental observations on the temperature and wind fields above flat grassy terrain have been obtained with an instrumented 92-m tower during intervals of strong insolation about midday. The turbulence characteristics of the air confirm that free convection prevailed at heights between 16 and 48 m, with some tendency for departure at higher levels. The spectra of temperature and vertical velocity contain gaps at wave numbers in the range 0.01–0.025 m–1. These are attributed to natural thermal plumes that act as sources of extra energy input to the Kolmogorov-Obukhov-Corrsin scheme of turbulence in or at the low-wave number limit of the inertial subrange. Modified forms of the K-O-C spectral laws for thermally unstable air are derived which agree with the observed spectra over the whole range of wave numbers examined, and which contain the spectral gap at wave numbers corresponding to the thermal plume diameters.  相似文献   

9.
Turbulence Spectra And Dissipation Rates Above And Within A Forest Canopy   总被引:4,自引:0,他引:4  
Three velocity componentsand temperature were measured usingthree-dimensional sonic anemometers/thermometers attwo levels, above and within a forest canopy, in theChangbai Mountains of northeast China. Turbulencespectral structure, local isotropy anddissipation rates above and within the forest canopywere calculated using the eddy correlation method.Results show that the normalized turbulent spectralcurves have -2/3 slopes in the inertial subrange.While the shapes of the spectra are in good agreementwith the Kansas flat terrain results, the atmosphericturbulence is anisotropic above the forest canopy. Dueto breaking down of large eddies by the foliage,branches and trunks, the spectral peak frequencies forvelocity and temperature are higher withinthan above the forest canopy. Compared withmeasurements from previous studies over flat terrain,the velocity and temperature spectra above andinside the forest canopy appear to shift toward higherfrequencies. The turbulence is approximately isotropicin the inertial subrange within the forest canopy, and isanisotropic above the forest canopy. The turbulentkinetic energy and heat energy dissipation rates aboveand inside the forest canopy are much larger thanthose obtained by Kaimal and Hogstrom over grasslandand grazing land. The distinct features in the resultsof the present experiment may be attributed to thedynamic forcing caused by the rough surface of the forestcanopy.  相似文献   

10.
Spectral characteristics of surface layer turbulence in an urban atmosphere are investigated. The observations used for this purpose represent low wind conditions in the tropics. The normalized power spectral shapes exhibit the usual characteristics in the inertial subrange and obey Monin-Obukhov scaling. However, the low-frequency behaviours do not conform to the previous observed relations. For horizontal components, large energy is contained in the low frequencies in contrast to the vertical component where roll-off to zero frequency is faster.The turbulent kinetic energy dissipation rate estimated from the spectra using Kolmogorov's inertial subrange law is found to be isotropic unlike the velocity variances. The expressions for the dimensionless dissipation rate do not seem to work well in low winds in an urban atmosphere. For the data considered, the dissipation rate exhibits a power law relationship with the mean windspeed and the friction velocity.  相似文献   

11.
The scalar concentration fluctuations within a plane parallel-to-the-ground surface were measured inside a model canopy composed of densely arrayed rods using the laser-induced fluorescence technique. Two-dimensional scalar concentration spectra were computed and were shown to exhibit an approximate ?3 power-law scaling at wavenumbers larger than those associated with wake production during quiescent instances when von Karman vortex streets dominated the flow. However, during instances when sweeps disrupted the flow, the spectral exponents increased above ?3. The ?3 power-law for these concentration fluctuation spectra measurements was shown to be consistent with a simplified spectral budget for locally homogeneous and isotropic turbulence augmented with a relaxation time scale similarity argument that assumed a constant enstrophy injection rate and wake generation mechanism. Hence, the origin of this ?3 power-law scaling here differs from the well-known ?3 power-law result for the so-called inertial diffusive range derived for the scalar concentration spectrum at small Prandtl numbers.  相似文献   

12.
Sea-surface stress measurements were made from a rigid tower in shallow water near San Diego, California, by both the direct covariance and inertial dissipation techniques. Stress estimates from the dissipation technique were generally higher than the directly measured values, with average drag coefficients of 0.99 x 10-3 and 0.77 x 10-3, respectively, for 8-m wind speeds of 5 to 7 m s-1. In the inertial subrange, ratios of vertical to streamwise velocity spectra averaged 1.06 ± 0.16, significantly less than the isotropic value of 4/3 observed over land, suggesting that turbulence over water may be altered by the presence of waves.  相似文献   

13.
A Lagrangian Decorrelation Time Scale in the Convective Boundary Layer   总被引:1,自引:1,他引:0  
A new method for deriving the Lagrangian decorrelation time scales for inhomogeneous turbulence is described. The expression for the time scales here derived for the convective boundary layer is compared to those estimated by Hanna during the Phoenix experiment. Then the values of C0, the Lagrangian velocity structure function constant, and of Bi, the Lagrangian velocity spectrum constant, were evaluated from the Eulerian velocity spectra and from the Lagrangian time scales derived, under unstable conditions, from Taylor's statistical diffusion theory. The numerical coefficient of the lateral and vertical Lagrangian spectra in the inertial subrange was found equal to 0.21, in good agreement with previous experimental estimates.  相似文献   

14.
Atmospheric turbulence was measured within a black spruce forest, a jack pine forest, and a trembling aspen forest, located in southeastern Manitoba, Canada. Drag coefficients (C d ) varied little with height within the pine and aspen canopies, but showed some height dependence within the dense spruce canopy. A constant C d of 0.15, with the measured momentum flux and velocity profiles, gave good estimates of leaf-area-index (LAI) profiles for the pine and aspen canopies, but underestimated LAI for the spruce canopy.Velocity spectra were scaled using the Eulerian integral time scales and showed a substantial inertial subrange above the canopies. In the bottom part of the canopies, the streamwise and cross-stream spectra showed rapid energy loss whereas the vertical spectra showed an apparent energy gain, in the region where the inertial subrange is expected. The temperature spectra showed an inertial subrange with the expected -2/3 slope at all heights. Cospectra of momentum and heat flux had slopes of about -1 in much of the inertial subrange. Possible mechanisms to explain some of the spectral features are discussed.  相似文献   

15.
广州市近地层大气的湍流微结构和谱特征   总被引:16,自引:1,他引:16       下载免费PDF全文
本文利用UVW脉动风速仪资料分析了广州市区近地层大气的湍流强度、相关系数、尺度和速度谱,并获得了不同稳定度条件下的速度谱模式.结果表明,城市近地层大气湍流在惯性副区接近局地各向同性、速度谱符合Kolmogorov相似理论;气流方向上下垫面粗糙度的增加,使沿海城市近地层大气湍流能量(特别是铅直方向)比平坦、均匀下垫面上的增加.  相似文献   

16.
Townsend's attached eddy hypothesis states that the turbulent structure in the constant stress layer can be decomposed into attached and detached eddy motion. This paper proposes and tests a methodology for separating the attached and detached eddy motion from time series measurements of velocity and temperature. The proposed methodology is based on the time-frequency localization and filtering capabilities of the orthonormal wavelet transforms. Using a relative entropy statistical measure, the optimal wavelet basis is identified first. The turbulence time series measurements are then transformed into the wavelet domain where the contribution of specific events in the time-frequency domain is identified. The filtering scheme utilizes a recently constructed Lorentz thresholding methodology that successfully eliminates all wavelet coefficients associated with the detached eddy motion. While this filtering scheme lacks the compression efficiency of the classical Donoho and Johnstone's universal thresholding model, it conserves the higher-order statistics and important turbulence interactions related to the Reynolds stresses. Following the filtering scheme, the attached eddy motion time series is re-constructed by an inverse wavelet transform of the non-zero wavelet coefficients. The proposed partitioning methodology for attached and detached eddy motion is tested using 56 Hz triaxial sonic anemometer velocity and temperature measurements above a uniform dry lake bed in Owens valley, California, for a wide range of atmospheric stability conditions. Validation that the wavelet filtered time series represents the attached eddy motion is also discussed in the context of conservation of turbulence energy and surface fluxes.  相似文献   

17.
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity (w), and cup anemometers to measure horizontal wind speed (s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral.Profiles of s and of the standard deviation ( w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy.Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.  相似文献   

18.
The turbulence in a laboratory convective mixed layer is probed more extensively than in the preliminary study of Willis and Deardorff (1974), and results presented. Turbulence intensities, spectra and probability distributions using mixed-layer scaling compare favorably with similarly scaled field measurements not available or plentiful in 1974. However, the velocity spectra in the convection tank exhibit only a short inertial subrange due to the close proximity of the dissipation subrange to the energy-containing range.The turbulence budget suggests that the convergence of the vertical transport of pressure fluctuations is a rather important term.Results on the entrainment rate are also presented, using both mixed-layer scaling and local interfacial scaling.  相似文献   

19.
We use large-eddy simulation (LES) to study the turbulent pressure field in atmospheric boundary layers with free convection, forced convection, and stable stratification. We use the Poisson equation for pressure to represent the pressure field as the sum of mean-shear, turbulence–turbulence, subfilter-scale, Coriolis, and buoyancy contributions. We isolate these contributions and study them separately. We find that in the energy-containing range in the free-convection case the turbulence–turbulence pressure dominates over the entire boundary layer. That part dominates also up to midlayer in the forced-convection case; above that the mean-shear pressure dominates. In the stable case the mean-shear pressure dominates over the entire boundary layer.We find evidence of an inertial subrange in the pressure spectrum in the free and forced-convection cases; it is dominated by the turbulence–turbulence pressure and has a three-dimensional spectral constant of about 4.0. This agrees well with quasi-Gaussian predictions but is a factor of 2 less than recent results from direct numerical simulations at moderate Reynolds numbers. Measurements of the inertial subrange pressure spectral constant at high Reynolds numbers, which might now be possible, would be most useful.  相似文献   

20.
何京伟  谈哲敏 《气象科学》2001,21(4):433-444
在边界层动力学中,涡动粘性系数是影响边界层风场结构的一个重要参数。本文利用边界层动力学中的Ekman动量近似理论,给出了涡动粘性系数随高度缓变条件下的Ekman动量近似边界层模式解,着重讨论了边界层的风场结构、水平散度、垂直涡度以及边界层顶部的垂直速度。结果分析表明:与常值涡动粘性系数情况相比,在边界层低层随高度增加的涡动粘性系数可以导致低层边界层风速随高度迅速增加,即风速垂直切变增加,同时风速矢与地转风之间的夹角减小。惯性项作用可以导致上述作用在气旋性区域减小、而在反气旋性区域增大。随高度增加的涡动粘性系数导致水平散度绝对值、垂直涡度绝对值以及边界层顶部的垂直速度绝对值在气旋性区域减小,而在反气性旋区域增大。涡动粘性系数与惯性之间的非线性相互作用是边界层动力学中重要过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号