首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the ground segment, pre-launch operations concepts, and data products supporting the SOHO mission. Our goal is threefold: first, we provide a historical view of the design and development of the systems described here, as a background perspective to those who will use the system and those who may build such systems for future missions. Second, because we hope that many researchers from the solar and space physics communities will visit these facilities during the mission, we provide an overview for the benefit of the end-user. We anticipate that visitors to GSFC may plan observations for one or more of SOHO's complement of instruments, and such researchers may use the facilities to analyze data gathered by the SOHO instruments. Third, we present the working plan for investigators with groundbased or other spacebased instruments to collaborate with SOHO.  相似文献   

2.
We compare the electron densities of two martian ionospheric layers, which we call M1 and M2, measured by Mars Global Surveyor during 9-27 March 1999, with the electron densities of the terrestrial E and F1 layers derived from ionosonde data at six sites. The day-to-day variations are all linked to changes in solar activity, and provide the opportunity of making the first simultaneous study of four photochemical layers in the solar system. The ‘ionospheric layer index’, which we introduce to characterize ionospheric layers in general, varies between layers because different atmospheric chemistry and solar radiations are involved. The M2 and F1 layer peaks occur at similar atmospheric pressure levels, and the same applies to the M1 and E layers.  相似文献   

3.
4.
电离层从猜想到证实完全是无线电技术发展的结果。通过地面无线电探测和火箭、卫星的空间探测、证实了Chapman的理论。由于太阳紫外线,X射线辐射致使高空上层大气电离。电离层介质是电子、正负离子和中性粒子全体的混合物。它们构成了地磁场中磁离子介质。本文根据磁离子理论,研究了电离层中等离子体的频率特性,从而解释了D、E、F1和F2层的电波反射特性。最后计算了陕西天文台至云南天文台电离层波导的传播时延,获得了有意义的结果。  相似文献   

5.
6.
The PICARD microsatellite mission will provide 2 to 6 years simultaneous measurements of the solar diameter, differential rotation and solar constant to investigate the nature of their relations and variabilities. The 100 kg satellite has a 40 kg payload consisting of 3 instruments which will provide an absolute measure (better than 10 milliarcsec) of the diameter and the solar shape, a measure of total solar irradiance, and UV and visible flux in selected wavelength bands. Now in Phase B, PICARD is expected to be launched before mid-2003. The engineering model of the diameter telescope will be used on ground simultaneously with the satellite to investigate the atmospheric bias and state on the possible accuracy of the ground measurements carried up to now. We review the scientific goals linked to the diameter measurement, present the payload, and give a brief overview of the program aspects.  相似文献   

7.
The MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on the Mars Express spacecraft provides both local and remote measurements of electron densities and measurements of magnetic fields in the martian ionosphere. The density measurements show a persistent level of large fluctuations, sometimes as much as a factor of three or more at high altitudes. Large magnetic field fluctuations are also observed in the same region. The power spectrums of both the density and magnetic field fluctuations have slopes on a log-log plot that are consistent with the Kolmogorov spectrum for isotropic fluid turbulence. The fractional density fluctuation, Δne/ne, of the turbulence increases with altitude, and reaches saturation, Δne/ne ∼ 1, at an altitude of about 400 km, near the nominal boundary between the ionosphere and the magnetosheath. The fluctuations are usually so large that a well-defined ionopause-like boundary between the ionosphere and the solar wind is seldom observed. Of mechanisms that could be generating this turbulence, we believe that the most likely are (1) solar wind pressure perturbations, (2) an instability in the magnetosheath plasma, such as the mirror-mode instability, or (3) the Kelvin-Helmholtz instability driven by velocity shear between the rapidly flowing magnetosheath and the ionosphere.  相似文献   

8.
There are observational and theoretical evidences both in favor of and against hydrodynamic escape (HDE) on Titan, and the problem remains unsolved. A test presented here for a static thermosphere does not support HDE on Titan and Triton but favors HDE on Pluto. Cooling of the atmosphere by the HCN rotational lines is limited by rotational relaxation above 1100 km and self-absorption below 900 km on Titan. HDE can affect the structure and composition of the atmosphere and its evolution. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempts to calculate them separately may result in significant errors. Here we apply our photochemical model of Titan’s atmosphere and ionosphere to the case of no hydrodynamic escape. Our model is still the only after-Cassini self-consistent model of coupled neutral and ion chemistry. The lack of HDE is a distinct possibility, and comparing models with and without HDE is of practical interest. The mean difference between the models and the neutral and ion compositions observed by INMS are somewhat better for the model with HDE. A reaction of NH2 with H2CN suggested by Yelle et al. (2009) reduces but does not remove a significant difference between the ammonia abundances in the models and INMS observations. Losses of methane and nitrogen and production and deposition to the surface of hydrocarbons and nitriles are evaluated in the model, along with lifetimes and evolutionary aspects.  相似文献   

9.
At the Low-Frequency Array (LOFAR)(Planet. Space Sci. (2004) these proceedings) frequencies (HF/VHF), extraterrestrial radiation experiences substantial propagation delay as it passes through the ionosphere. The adaptive calibration technique to be employed by LOFAR will use signals from many known bright radio sources in the sky to estimate and remove the effects of this delay. This technique will operate along many simultaneous lines of sight for each of the stations. Measurements will be made on time scales of seconds or shorter, and with accuracies corresponding to path length variations of 1 cm or less. Tomographic techniques can be used to invert the thousands of changing and independent total electron content (TEC) measurements produced by LOFAR into three-dimensional electron density specifications above the array. These specifications will measure spatial and time scales significantly smaller and faster than anything currently available. These specifications will be used to investigate small-scale ionospheric irregularities, equatorial plasma structures, and ionospheric waves. In addition, LOFAR will improve the understanding of the solar drivers of the ionosphere by simultaneously measuring the solar radio bursts and the TEC. Finally, LOFAR, which will be situated to observed the galactic plane, will make continuous, high-resolution observations of the low-latitude ionosphere, an important but under-observed region. This paper will look at LOFAR as an ionospheric probe including comparisons to other ionospheric probes as well as possible methods of operation to optimize ionospheric measurements.  相似文献   

10.
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the Mars Express spacecraft has occasionally displayed surprising features. One such feature is the occurrence of a series of broadband, low-frequency echoes at equally spaced delay times after the sounder transmitter pulse. The interval between the echoes has been shown to be at the cyclotron period of electrons orbiting in the local magnetic field. The electrons are believed to be accelerated by the large voltages applied to the antenna by the sounder transmitter. Measurements of the period of these “electron cyclotron echoes” provide a simple technique for determining the magnitude of the magnetic field near the spacecraft. These measurements are particularly useful because Mars Express carries no magnetometer, so this is the only method available for measuring the magnetic field magnitude. Using this technique, results are presented showing the large scale structure of the draped field inside the magnetic pile-up boundary. The magnitude of the draped field is shown to vary from about 40 nT at a solar zenith angle of about 25°, to about 25 nT at a solar zenith angle of 90°. The results compare favorably with similar results from the Mars Global Surveyor spacecraft. A fitting technique is developed to derive the vector direction and magnitude of the draped magnetic field in cases where the spacecraft passes through regions with significant variation in the crustal field. The magnetic field directions are consistent with current knowledge of the draping geometry of the magnetic field around Mars.  相似文献   

11.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

12.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

13.
We studied experimental data on ultra-violet (UV) nightglow in the wavelength range 300-400 nm, and energetic electron fluxes measured by low-altitude polar satellite Universitetskii-Tatiana. From statistical analysis we have found three latitudinal regions of enhanced UV emission at low, middle and high latitudes. Modeling the electron precipitations to the atmosphere gave numerical estimation of the generated UV radiation. We found that the stable and quasi-stable fluxes of electrons precipitating at middle and low latitudes are too weak to explain the observed intensities of UV radiation. The high-latitude UV nightglow with intensity of several kiloRayleighs results from particle precipitation in the regions of aurora and outer radiation belt. The low-latitude UV enhancements of several hundreds Rayleighs can be related to the emission of mesospheric atomic oxygen whose concentration increases substantially at latitudes from 20° to 40°. A mechanism of the mid-latitude UV enhancements is still unknown and requires further investigations.  相似文献   

14.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

15.
The thin atmosphere of Neptune's moon Triton is dense enough to ablate micrometeoroids as they pass through. A combination of Triton's orbital velocity around Neptune and its orbital velocity around the Sun gives a maximum meteoroid impact velocity of approximately 19 km s−1, sufficient to heat the micrometeoroids to visibility as they enter. The ablation profiles of icy and stony micrometeoroids were calculated, along with the estimated brightness of the meteors. In contrast to the terrestrial case, visible meteors would extend very close to the surface of Triton. In addition, the variation in the meteoroid impact velocity as Triton orbits Neptune produces a large variation in the brightness of meteors with orbital phase, a unique Solar System phenomenon.  相似文献   

16.
The identification of magnetic, electric and electromagnetic (EM) precursory signals related to volcanic activities and earthquakes is still a matter of debate. Some examples are now well established, but they are often based on a few parameters recorded on sparse equipments and with no multi-disciplinary approach. Demeter program takes into account a more complete approach of EM phenomena related to volcanic eruptions and earthquakes, by combining both ground-based and satellite EM monitoring, from direct current to several kilohertz, i.e. from ULF, ELF to VLF frequency domains.The research program stands in two parts: one is the identification of EM signals at the satellite altitude and the other consists in detailed studies in a few pilot sites on the ground. Two main test sites have been considered: La Fournaise volcano in Réunion Island and the seismogenic Corinth rift in Greece. Both sites allow for performing EM studies in a multi-disciplinary environment.La Fournaise volcano erupts on average two times a year. The self-recording Demeter EM station is composed of three modules measuring the components of the magnetic and electric fields in three different frequency domains: DC to 0.5 Hz, 0.0033-160 Hz and 8-10 kHz. Preliminary observations made during the May 2003 eruption show that electric and magnetic signals appeared before the eruption. Some signals present sharp step-like variations, with amplitudes up to several hundreds mV per km and a few hour duration, followed by periods with a higher spectral frequency content. The frequency of these signals can be of several tens of Hz.The Corinth rift is a highly seismic area, frequently affected by seismic swarms. In 2004 the region has experienced tens of earthquakes of magnitude less than 4.6. A Demeter station has been set up on the Trizonia Island along the northern mainland coast, where a 30 km long seismic gap has been identified. The station is composed of two modules recording the three components of the magnetic field and the two horizontal components of the electric field in the ULF and ELF-VLF frequency bands. The audiomagnetotelluric soundings show that the station is close to a regional conductive fault connected to the sea. The first 4 months of observation clearly show that 29 earthquakes, even of low magnitude (M?2.8), occurring at less than 140 km of distance of the station, have generated electric signals when the seismic waves have passed the EM station. For a given magnitude of the earthquake, the energy of the electric signal is independent of the distance between the focal source and the EM station, which points out local electric source mechanisms. The greater the magnitude of the earthquake, the greater is the energy of the electric signal is. The co-seismic electric signals have the same morphology as that of the passing seismic wave, and there is no noticeable time delay between the electric and the seismic signals. This simultaneity between the seismic and the electric signal is best explained by the generation of an electrokinetic effect due to the passage of the seismic wave through the seawater-saturated ground.  相似文献   

17.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

18.
During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm−3) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfvén waves.  相似文献   

19.
The Radio occultation experiment on board Mariner 9 has been used to demonstrate that the altitude of the main electron density peak in the Martian ionosphere is closely related to the height of Mars’ surface at the occultation point. This is direct evidence for topographic effects on the Martian ionosphere. Modeling indicates that topographic-induced modulations of the neutral density in the upper atmosphere can account for the observed ionospheric effects. The neutral density modulation is likely to be caused by nonmigrating tides in the Martian thermosphere.  相似文献   

20.
The influence of solar EUV and solar wind conditions on ion escape at Mars is investigated using ion data from the Aspera-3 instrument on Mars Express, combined with solar wind proxy data obtained from the Mars Global Surveyor (MGS) spacecraft. A solar EUV flux proxy based on data from the Earth position, scaled and shifted in time for Mars, is used to study relatively long time scale changes related to solar EUV variability. Data from May 2004 until November 2005 has been used. A clear dependence on the strength of the subsolar magnetic field as inferred from MGS measurements is seen in the ion data. The region of significant heavy ion flows is compressed and the heavy ion flux density is higher for high subsolar magnetic field strength. Because of the difference in outflow area, the difference in estimated total outflow is somewhat less than the difference in average flux density. We confirm previous findings that escaping planetary ions are mainly seen in the hemisphere into which the solar wind electric field is pointed. The effect is more pronounced for the high subsolar magnetic field case.The average ion motion has a consistent bias towards the direction of the solar wind electric field, but the main motion is in the antisunward direction. The antisunward flow velocity increases with tailward distance, reaching above at 2 to 3 martian radii downtail from Mars for O+ ions. Different ion species reach approximately the same bulk flow energy. We did not find any clear correlation between the solar EUV flux and the ion escape distribution or rate, probably because the variation of the solar EUV flux over our study interval was too small. The results indicate that the solar wind and its magnetic field directly interacts with the ionosphere of Mars, removing more ions for high subsolar magnetic field strength. The interaction region and the tail heavy ion flow region are not perfectly shielded from the solar wind electric field, which accelerates particles over relatively large tail distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号