首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Spectra for certain comets show the presence of crystalline silicate dust grains believed to have been incorporated during comet formation. While grain crystallization is widely assumed to result from the thermal annealing of precursor amorphous grains, the physical processes behind the silicate amorphous‐to‐crystalline transition are poorly understood. This makes it difficult to place constraints on the evolutionary histories of both grains and comets, and consequently, on the nebular conditions in which they formed. It has, therefore, become necessary to study this process in the laboratory using simulated grain materials. In this paper, we discuss recent results from laboratory investigations into a basic amorphous MgSiO3 silicate annealed in the region of 1000 K. Our object is not to model the behavior of dust grains per se, but to study the underlying process of crystallization and separate the physics of the material from the astrophysics of dust grains. In our experiments, we bring together spectroscopic measurements made in the infrared with the high resolution structural probing capabilities of synchrotron X‐ray powder diffraction. The combined use of these complementary techniques provides insights into the crystallization process that would not be easily obtained if each was used in isolation. In particular, we focus on the extent to which the identification of certain spectral features attributed to crystalline phases extends to the physical structure of the grain material itself. Specifically, we have identified several key features in the way amorphous MgSiO3 behaves when annealed. Rather than crystallize directly to enstatite (MgSiO3) structures, in crystallographic terms, amorphous MgSiO3 can enter a mixed phase of crystalline forsterite (Mg2SiO4) and SiO2‐rich amorphous silicate where structural evolution appears to stall. Spectroscopically, the evolution of the 10 μm band does not appear to correlate directly with structural evolution, and therefore, may be a poor indicator of the degree of crystallinity. Indeed, certain features in this band may not be indicators of crystal type. However, the 20 μm band is found to be a good indicator of crystal structure. We suggest that forsterite forms from the ordering of pre‐existing regions rich in SiO4 and that this phase separation is aided by a dehydrogenation processes that results in the evolutionary stall. The implications of this work regarding future observations of comets are discussed.  相似文献   

2.
Within the framework of classical nucleation theory we have shown that Mg2SiO4 grains (radii of nearly 0.1 μm) which are likely candidates as condensation products in circumstellar shells around late-type stars must condense at about 750 K to remain amorphous. If the condensation temperature is about 1000 K the newly formed grains must be rather small to rest in the amorphous state during cooling. Submicron sized MgSiO3grains are entire stable against crystallization for Tcond ≤ 1000 K.  相似文献   

3.
The production of Fe2SiO4 (fayalite) crystalline grains was performed by two processes, namely, grain formation in a plasma field by evaporating a mixture powder of Fe and SiO and heat treatment of the product collected on the radio-frequency (RF) electrode side. Fe grains <20 nm in size covered with an amorphous SiO layer selectively formed Fe2SiO4 grains by heating at 800 °C. By heating at 600 °C, in addition to the formation of Fe2SiO4 crystal grains, the FeO phase appeared. The doping effect of excited oxygen in a plasma field into the Fe small grains may be the trigger on the formation of fayalite through the FeO phase formation. The present experimental result suggests that the probability of Fe2SiO4 grain formation in space is low.  相似文献   

4.
We have constructed a grid of model atmospheres for cool dwarf stars and brown dwarfs with Teff ≤ 3000 K that includes (i) an equation of state which accounts for over 600 gas phase species and 1000 liquids and solids, and (ii) the opacities of corundum (Al2O3), iron, enstatite (MgSiO3) and forsterite (Mg2SiO4), as well as amorphous carbon and SiC. We confirm earlier findings of Tsuji, Ohnaka & Aoki (1996a) that grains are abundant in the outer photospheric layers of red and brown dwarfs with spectral type later than M8. We identify high temperature condensates including perovskite (CaTiO3) that depletes the photospheres of important absorbers including TiO, and we confirm the disappearance of TiO bands in the observed spectra of cool dwarfs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

5.
Abstract— Synthetic MgSiO3 glasses were irradiated at room temperature by 300 keV electrons in a transmission electron microscope (TEM). One of the samples had been previously irradiated by 50 keV He+ ions. Electron irradiation induces the nucleation and growth of randomly oriented nanometer‐sized crystallites. The crystallites first consist of MgO and subsequently of forsterite (Mg2SiO4). Both are seen to form within an amorphous SiO2 matrix. The rate of crystallization of the samples has been monitored by conventional TEM imaging and electron diffraction. The sample that had been pre‐irradiated with He+ ions is found to transform faster than the as‐quenched glass. The crystallization of metastable MgSiO3 glasses is explained by ionizing radiation‐induced elemental diffusion that allows the reorganization of matter into a more favourable thermodynamic state. These results show that ionizing radiation interactions could account for crystal formation as observed in infrared spectroscopy in some young stellar environments.  相似文献   

6.
The chemistry leading to the formation of solid aerosols (tholins) in Titan's atmosphere is simulated by a capacitively coupled plasma in a N2-CH4 gas mixture. The solid grains are produced in volume directly in the gas phase and studied ex-situ by SEM imaging and by light scattering on clouds of particles. The scattered light properties depend on the physical properties of the particles (morphologies, size distribution), as well as on the phase angle and the wavelength of the light. The particles may be aggregated or agglomerated grains. The grains size distribution is studied as a function of plasma parameters such as initial methane concentration introduced into the discharge, gas flow, absorbed RF power and plasma duration. The average grain size increases when the amount of CH4 increases, when the gas flow decreases, and when the plasma duration increases up to a limit for each production condition.For all the samples, the absorption decreases with increasing wavelength in the visible domain. As usually found for irregular particles, the polarization phase curves have a bell-shaped positive branch and a shallow negative branch. The maximum of polarization (Pmax) increases when the average grain size decreases (sub-μm-sized grains). To obtain Pmax values within the range of those measured in Titan's atmosphere; the average grains diameter has to be smaller than 100 nm, in agreement with the space observations results. In the light-scattering experiment, the size of the agglomerates in the clouds is in the 40-80 μm range in equivalent diameter. As a consequence Pmax increases with decreasing wavelength due to the increasing absorption, in agreement with observations of Titan from outside the atmosphere.  相似文献   

7.
《Icarus》1986,66(2):211-222
Experimentally obtained MgSiO smokes were studied by analytical electron microscopy using the same samples that had been previously characterized by repeated infrared spectroscopy. Analytical electron microscopy shows that unannealed smokes contain some degree of microcrystallinity which increases with increased annealing for up to 30 hr. An SiO2 polymorph (tridymite) and MgO may form contemporaneously as a result of growth of forsterite (Mg2SiO4) microcrystallites in the initially nonstoichiometric smokes. After 4 hr annealing, forsterite and tridymite react to enstatite (MgSiO3). We suggest that infrared spectroscopy and X-ray diffraction analysis should be complemented by detailed analytical electron microscopy to detect budding crystallinity in vapor phase condensates.  相似文献   

8.
We report Os isotope compositions of metal grains in two CBa chondrites (Bencubbin and Gujba) determined using a micromilling sampling coupled with thermal ionization mass spectrometry, together with the abundances of major and trace siderophile elements obtained by electron probe microanalysis and femtosecond laser ablation inductively coupled plasma–mass spectrometry. The CBa metal grains presented 187Os/188Os ratios akin to carbonaceous chondrites with limited variations (0.1257–0.1270). Most of the CBa metal grains were scattered along a 187Re-187Os reference isochron of IIIAB iron meteorites, indicating that the CBa metals experienced limited Re-Os fractionation at the time of their formation. The Re/Os ratios of sampling spots for the CBa metals, recast from the observed 187Os/188Os ratios, had a positive correlation with their Os/Ir ratios. In addition, the metal grains showed a positive correlation in a Pd/Fe versus Ni/Fe diagram. These correlations suggest that the CBa metal grains have formed via equilibrium condensation or evaporation from a gaseous reservoir at ~10−4 bar with enhanced metal abundances. Compared to the Bencubbin metals, the Gujba metals are characterized by having systematically lower Pd/Fe and Ni/Fe ratios that span subchondritic values. Such a difference was most likely induced by the compositionally heterogeneous impact plume from which the metals were condensed.  相似文献   

9.
We discuss dust formation in steady state dust driven winds around oxygen-rich AGB stars, including not only homogeneous Al2O3 and silicate grains but also heterogeneous grains consisting of an Al2O3 core and a silicate mantle. In the inner subsonic region, Al2O3 grains with radii of ∼ 0.15 μm condense first, then condensation of silicate on Al2O3 starts slightly inside the sonic point, which accelerates the gas flow into the supersonic region. Also small silicate grains, whose radii are a few tens of ?ngstroms form beyond the sonic point. The carrier of 13 μm feature observed towards oxygen-rich AGB stars is considered to be the core-mantle grains consisting of an α-Al2O3 core and a silicate mantle from the radiation transfer calculations based on the results of dust formation calculations. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
As the saturnian magnetoplasma sweeps past Enceladus, it experiences both a decrease in electron content and sharp slowdown in the northern hemisphere region within ~5 Enceladus Radii (Re). This slowdown is observed by Cassini in regions not obviously associated with the southern directed plume-originating ions. We suggest herein that the decrease in northern hemisphere electron content and plasma slowdown could both be related to the presence of fine dust grains that are being accelerated by the Lorentz force created within the saturnian magnetic field system.  相似文献   

11.
We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty “dead” zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-in field in this region. Magnetic field is quasi-azimuthal close to the outer boundary of accretion disks for standard ionization rates and dust grain size a d=0.1 μm. In the case of large dust grains (a d>0.1 μm) or enhanced ionization rates, the magnetic field is quasi-radial in the outer regions. It is shown that the inner boundary of dusty “dead” zone is placed at r=(0.1–0.6) AU for accretion disks of stars with M=(0.5–2)?M . Outer boundary of “dead” zone is placed at r=(3–21) AU and it is determined by magnetic ambipolar diffusion. Mass of solid material in the “dead” zone is more than 3?M for stars with M≥1?M .  相似文献   

12.
Abstract– We report on the microstructure, crystallography, chemistry, and isotopic compositions of seven SiC X grains and two mainstream grains from the Murchison meteorite. TEM crystallographic analysis revealed that the X grains (approximately 3 μm) are composed of many small crystals (24–457 nm), while the similarly sized mainstream grains are composed of only a few crystals (0.5–1.7 μm). The difference in crystal size likely results from differences in their formation environments: the X grain crystals evidently formed under conditions of greater supersaturation and rapid growth compared to their mainstream counterparts. However, the same polytypes are observed in both mainstream and X grains. Six X grains and both mainstream grains are entirely the 3C‐SiC polytype and one X grain is an intergrowth of the 3C‐SiC and 2H‐SiC polytypes. EDXS measurements indicate relatively high Mg content in the X grains (≲5 atomic%), while Mg was undetectable in the mainstream grains. The high Mg content is probably from the decay of 26Al into 26Mg. Estimates of the 26Al/27Al ratios, which range from 0.44–0.67, were made from elemental Mg/Al ratios. This range is consistent with the 26Al/27Al ratios inferred from previous isotopic measurements of X grains. We also report the first direct observations of subgrains in X grains, including the first silicides [(Fe,Ni)nSim]. Diffraction data do not match any previously observed presolar phases, but are a good fit to silicides, which are predicted stable SN condensates. Eight subgrains with highly variable Ni/Fe ratios (0.12–1.60) were observed in two X grains.  相似文献   

13.
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary disks. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface. Magnetically-driven mixing has implications for disk chemistry and evolution of the grain population, and the effective viscous response of the disk determines whether planets migrate inwards or outwards. However, the weak ionisation of protoplanetary disks means that magnetic fields may not be able to effectively couple to the matter. I examine the magnetic diffusivity in a minimum solar nebula model and present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas, except at the disk surfaces where the low density of neutrals permits the ions to remain attached to the field lines. For a standard population of 0.1 μm grains the active surface layers have a combined column Σactive≈2 g cm−2 at 1 AU; by the time grains have aggregated to 3 μm, Σactive≈80 g cm−2. Ionisation in the active layers is dominated by stellar X-rays. In the absence of grains, X-rays maintain magnetic coupling to 10% of the disk material at 1 AU (i.e. Σactive≈150 g cm−2). At 5 AU the Σactive≈Σtotal once grains have aggregated to 1 μm in size.  相似文献   

14.
Because of the relatively low number densities found in typical interstellar clouds, molecules observed there must be produced by a combination of both two-body gas-phase reactions and surface reactions. The latter type includes various catalytic reactions, such as the formation of H2 on transition metal grains. These reactions are very temperature dependent, the grain temperature appearing in the exponential of the rate equations. Because of the small heat capacities of the grains due to their small sizes, they may be subject to considerable fluctuations in temperature. This problem is examined for iron grains and found to be minimal for sizes greater than 100 Å. Steady-state equilibrium temperatures are then calculated for a size distribution of iron particles ranging from 103 to 109 atoms per grain by a refined method of an earlier work by one of us (RGT). The results are that iron grain temperatures are significantly greater than those of dielectric grains of comparable size in the same radiation field.  相似文献   

15.
A pulsed laser has been used to vaporize olivine, pyroxene, nickel-iron alloy, Al2O3, carbon, calcium carbonate, and silicon carbide, as well as mixtures of immiscible phases (Au–Al2O3 and Au-olivine) in oxidizing, reducing, and inert atmospheres. The collected condensates usually consist of strings of grains which have a median diameter of 20–30 nm, which is comparable to the calculated sizes of some interstellar and circumstellar dust grains. The silicate minerals vaporized in O2 as well as calcium carbonate and carbon vaporized in Ar or H2, are collected as glassy grains while the other materials produced crystalline grains. The systems of immiscible phases when vaporized produced condensates consisting of intermixed 2–50 nm grains of both components. The type of size distribution, crystal structures, and qualitiative elemental analyses of the condensates are given. Possible similarities between the mechanism of grain growth, structure, morphology, and chemistry of laboratory grains compared to interstellar and circumstellar grains, phases in meteorites and extraterrestrial dust collected in the stratosphere are examined. Applications of the experimental technique include the production of grain systems to serve as laboratory analogues for spectral studies of grain materials believed to exist in astronomical environments, and studies of the structure of grains condensed from complex gas mixtures.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

16.
Abstract— Silicon nitride, Si3N4, has previously been observed to be a common constituent of acid residues of Qingzhen (EH3) and Indarch (EH4). Ion probe analysis of the Si, N and C isotopic compositions of individual Si3N4 grains from Qingzhen and Indarch acid residues suggest most, if not all, grains are Solar System in origin. A few grains have isotopically anomalous C but this is probably due to small presolar SiC grains adhering to them. In situ observations of the Si3N4 in Qingzhen show that it is only present within, and probably exsolved from, host phases which contain elemental Si in solid solution. Thermodynamic calculations suggest that the Si3N4 probably formed during metamorphism and not in the nebula. Thermodynamic calculations also show that sinoite (Si2N2O) and not Si3N4 should be the stable phase during metamorphism. It appears that kinetic factors must have inhibited the formation of sinoite in Qingzhen and Indarch.  相似文献   

17.
Abstract— It is proposed that the chondrules in enstatite chondrites formed near the Sun from rain‐like supercooled liquid silicate droplets and condensed Fe‐Ni alloys in thermodynamic equilibrium with a slowly cooling nebula. FeO formed and dissolved in the droplets in an initial stage when the nucleation of iron was blocked, and was later mostly reduced to unalloyed Fe. At high temperatures, the silicate droplets contained high concentrations of the less volatile components CaO and Al2O3. At somewhat lower temperatures the equilibrium MgO content of the droplets was relatively high. As cooling progressed, some droplets gravitated toward the Sun, and moved in other directions, depleting the region in CaO, Al2O3, and MgO and accounting for the relatively low observed CaO/SiO2, Al2O3/SiO2, and MgO/SiO2 ratios in enstatite chondrites. At approximately 1400 K, the remaining supercooled silicate droplets crystallized to form MgSiO3 (enstatite) with small amounts of olivine and a high‐SiO2 liquid phase which became the mesostases. The high enstatite content is the result of the supercooled chondrules crystallizing at a relatively low temperature and relatively high total pressure. Finally, FeS formed at temperatures below 680 K by reaction of the condensed Fe with H2S. All calculations were performed with the evaluated optimized thermodynamic databases of the FactSage thermodynamic computer system. The thermodynamic properties of compounds and solutions in these databases were optimized completely independently of any meteoritic data. Agreement of the model with observed bulk and phase compositions of enstatite chondrules is very good and is generally within experimental error limits for all components and phases.  相似文献   

18.
We investigate the method by which nearby supernovae – within a few tens of pc of the solar system – can penetrate the solar system and deposit live radioactivities on earth. The radioactive isotopic signatures that could potentially leave an observable geological imprint are in the form of refractory metals; consequently, it is likely they would arrive in the form of supernova-produced dust grains. Such grains can penetrate into the solar system more easily than the bulk supernova plasma, which gets stalled and deflected near the solar system due to the solar wind plasma pressure. We therefore examine the motion of charged grains as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation, and gravitational fields. We characterize the dust trajectories with analytical approximations which display the roles of grain size, initial velocity, and surface voltage. These results are verified with full numerical simulations for wide ranges of dust properties. We find that supernova dust grains traverse the inner solar system nearly undeflected, if the incoming grain velocity – which we take to be that of the incident supernova remnant – is comparable to the solar wind speeds and much larger than the escape velocity at 1 AU. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability and the dust capture onto the earth should have a geometric cross section. Our results cast in a new light the terrestrial deposition of radioisotopes from nearby supernovae in the geological past. For explosions beyond ~10 pc from earth, dust grains can still deliver supernova ejecta to earth, and thus the amount of supernova material deposited is set by the efficiency of dust condensation and survival in supernovae. Turning the problem around, we use observations of live 60Fe in both deep-ocean and lunar samples to infer a conservative lower bound iron condensation efficiency of Mdust,Fe/Mtot,Fe ? 4  × 10?4 for the supernova which apparently produced these species 2–3 Myr ago.  相似文献   

19.
We have theoretically studied the influence of a far-infrared radiation (FIR) field from Hπ region on the cooling by C and O atoms, C+ ion and CO molecule in a photodissociation region, and a molecular cloud associated with Hπ region (hereinafter referred as HI region) at low temperatures (T k≤200 K). Comparisons have been made for cooling with and without FIR for two extreme abundances (10−4 and 10−7) of the mentioned species for temperatures ranging between 10 and 200K and an hydrogen particle density range 10 cm−3n o≤ 107 cm3. The cooling by the species with low line-splitting (CI, Cπ and CO) is significantly influenced by the radiation field for temperaturesT k < 100 K while the effect of radiation field on cooling by OI is significant even at higher temperatures (T k > 100 K). The effect of FIR field on the cooling of CO from low rotational transitions is negligibly small, whereas it is considerable for higher transitions. In general, the cooling terms related to the short-wavelength transitions are more affected by FIR than those related to longer wavelengths. It is also demonstrated here that in the determination of thermal structure of an HI region the dust grains play an important role in the heating of gas only through photoelectron emission following irradiation by far-ultraviolet (FUV) radiation, as the infrared radiation from the dust is too small to have substantial effect on the cooling. It is found that in the Hπ /HI interface the FIR field from grains in the Hπ region is not capable of modifying the temperature of the warmest regions but does so in the inner part where the temperature is low enough.  相似文献   

20.
Abstract— Carbonates in Martian meteorite Allan Hills 84001 occur as grains on pyroxene grain boundaries, in crushed zones, and as disks, veins, and irregularly shaped grains in healed pyroxene fractures. Some carbonate disks have tapered Mg-rich edges and are accompanied by smaller, thinner and relatively homogeneous, magnesite microdisks. Except for the microdisks, all types of carbonate grains show the same unique chemical zoning pattern on MgCO3-FeCO3-CaCO3 plots. This chemical characteristic and the close spatial association of diverse carbonate types show that all carbonates formed by a similar process. The heterogeneous distribution of carbonates in fractures, tapered shapes of some disks, and the localized occurrence of Mg-rich microdisks appear to be incompatible with growth from an externally derived CO2-rich fluid that changed in composition over time. These features suggest instead that the fractures were closed as carbonates grew from an internally derived fluid and that the microdisks formed from a residual Mg-rich fluid that was squeezed along fractures. Carbonate in pyroxene fractures is most abundant near grains of plagioclase glass that are located on pyroxene grain boundaries and commonly contain major or minor amounts of carbonate. We infer that carbonates in fractures formed from grain boundary carbonates associated with plagioclase that were melted by impact and dispersed into the surrounding fractured pyroxene. Carbonates in fractures, which include those studied by McKay et al. (1996), could not have formed at low temperatures and preserved mineralogical evidence for Martian organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号