首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— Magnetic spherules have recently been found in Pleistocene sediments in Alberta, Canada. The spherules are composed of magnetite (FeFe2O4) and wüstite (Fe1-xO); some have metallic cores composed of pure α-Fe metal. Other metal cores contain from 0.1% to 0.88% Ni by weight. Comparison of morphology, internal structure and chemical and mineralogical compositions with those of spherules of known origin suggests that the Alberta spherules are of extraterrestrial origin.  相似文献   

2.
We report the ratio of the initial carbon available as CO that forms gas‐phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface‐mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume “filamentous” structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain–grain sticking during low‐velocity collisions.  相似文献   

3.
Late Eocene crystal-bearing spherules have been found in deep sea cores from the Caribbean Sea, Gulf of Mexico, equatorial Pacific Ocean, and eastern equatorial Indian Ocean. Keller et al. (1987) have suggested that the spherules from the western equatorial Pacific (Site 292, core 38) and eastern Indian Ocean (Site 216) are older (Globigerapsis semiinvoluta Zone) than those from the central equatorial Pacific, Gulf of Mexico, and Caribbean Sea (Globorotalia cerroazulensis Zone). The strongest argument in favor of two layers is the biostratigraphic data; however, published biostratigraphic interpretations are at odds with Keller et al.'s (1987) conclusions. Furthermore, paleomagnetic data for Site 292 seems to contradict Keller et al.'s conclusion that the spherules found in core 36 occur in sediments of the same stratigraphic age as those found in the central equatorial Pacific, Gulf of Mexico, and Caribbean Sea sites. Although the spherules from Sites 216 and 292 (core 38) do have higher average CaO, and lower average Al2O3 and FeO contents than the late Eocene spherules from the other sites, there is a great deal of overlap in composition. It is our opinion that the similarities in composition and petrography between the late Eocene crystal-bearing spherules are greater than the differences. Additionally, there seems to be a systematic change in composition and in amount of iridium excess from east to west when all the sites containing the crystal-bearing spherules are considered. We believe, therefore, that it is likely that the late Eocene crystal-bearing spherules all belong to a single event.  相似文献   

4.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

5.
Abstract— Impact spherules in Cretaceous/Tertiary (K/T) boundary clays and claystones consist of two types; each type is confined to its own separate layer of the boundary couplet in the Western Hemisphere. The form and composition of each of the spherule types result from its own unique mode of origin during the K/T event. Type 1 splash-form spherules occur only in the melt-ejecta (basal) layer of the K/T couplet. This layer was deposited from a ballistic ejecta curtain composed of melt-glass droplets transported mostly within the atmosphere. In contrast, Type 2 spherules are accreted, partially crystalline, spheroidal bodies that formed by condensation of vaporized bolide and target-rock materials in an expanding fireball cloud, from which they settled out of buoyant suspension to form the fireball layer. Dendritic and skeletal Ni-rich spinel crystals are unique to these Type 2 spherules in the fireball layer. Compositions of relict glasses found in Type 1 K/T spherules from Haiti indicate that they were derived from intermediate silicic target rocks. These melt-glass droplets were deposited into an aqueous environment at both continental and marine sites. We propose that the surfaces of the hot melt droplets hydrated rapidly in water and that these hydrated glass rims then altered to palagonite. Subsequent alteration of the palagonite rims to smectite, glauconite, chlorite, kaolinite, or goyazite occurred later during various modes of progressive diagenesis, accompanied by dissolution of some of the glass cores in spherules from continental sections and from marine sections that were subsequently raised above sea level. In many of the nonmarine sections in the Western Interior, the glass cores altered to kaolinite instead of dissolving. Directly comparable spherule morphologies (splash forms), textural features of the altered shells, and scalloping and grooving of relict glass cores or secondary casts demonstrate that the Haitian and Wyoming spherules are equivalent altered Type 1 melt-droplet bodies. The spherules at both locations were deposited in a melt-ejecta layer as part of the K/T impact event. Previously, two types of relict impact glasses had been identified in the Haitian spherule beds: black glass of andesitic composition and high-Ca yellow glass with an unusually high S content. Most workers agree that the latter probably formed by impact melting and mixing of surficial carbonate (and minor anhydrite) rocks with the more deeply-buried crystalline parent rocks of the black glasses. However, some workers have suggested that an intermediate compositional gap exists between the two groups of glasses, implying a different origin than simple mixing of end members during impact. We report glass compositional analyses with values extending throughout this intermediate range, lending support to the impact-mixing model. Inclusions of CaSO4 found by us in relict yellow glasses further support this model.  相似文献   

6.
The ~50 or 570 ka old Lonar crater, India, was excavated in the Deccan Trap flood basalt of Cretaceous age by the impact of a chondritic asteroid. The impact-spherules known from within the ejecta around this crater are of three types namely aerodynamically shaped sub-mm and mm size spherules, and a sub-mm sized variety of spherule, described as mantled lapilli, having a core consisting of ash-sized grains, shocked basalt and solidified melts surrounded by a rim of ash-sized materials. Although, information is now available on the bulk composition of the sub-mm sized spherules (Misra et al. in Meteorit Planet Sci 7:1001–1018, 2009), almost no idea exists on the latter two varieties. Here, we presented the microprobe data on major oxides and a few trace elements (e.g. Cr, Ni, Cu, Zn) of mm-sized impact spherules in unravelling their petrogenetic evolution. The mm-sized spherules are characterised by homogeneous glassy interior with vesicular margin in contrast to an overall smooth and glassy-texture of the sub-mm sized spherules. Undigested micro-xenocrysts of mainly plagioclase, magnetite and rare clinopyroxene of the target basalt are present only at the marginal parts of the mm-sized spherules. The minor relative enrichment of SiO2 (~3.5 wt% in average) and absence of schlieren structure in these spherules suggest relatively high viscosity of the parent melt droplets of these spherules in comparison to their sub-mm sized counterpart. Chemically homogeneous mm-sized spherule and impact-melt bomb share similar bulk chemical and trace element compositions and show no enrichment in impactor components. The general depletion of Na2O within all the Lonar impactites was resulted due to impact-induced volatilisation effect, and it indicates the solidification temperature of the Lonar impactites close to 1,100 °C. The systematic geochemical variation within the mm-sized spherules (Mg# ~0.38–0.43) could be attributed to various level of mixing between plagioclase-dominated impact melts and ultrafine pyroxene and/or titanomagnetite produced from the target basalt due to impact. Predominance of schlieren and impactor components (mainly Cr, Ni), and nearly absence of vesicles in the sub-mm sized spherules plausibly suggest that these quenched liquid droplets could have produced from the impactor-rich, hotter (~1,100 °C or more) central part of the plume, whereas the morpho-chemistry of the mm-sized spherules induces their formation from the relatively cool outer part of the same impact plume.  相似文献   

7.
Abstract— The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil‐ 1. Chicxulub is buried beneath thick post‐impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatàn. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C‐1 and Y‐6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an εtCHUR(Nd)‐εtUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.  相似文献   

8.
The structural evolution of sol–gel‐produced amorphous Mg(x)Ca(1–x)SiO3 silicates is investigated. Mid‐IR Fourier transform infrared spectroscopy and synchrotron X‐ray diffraction are used to confirm the amorphous nature of the as‐prepared silicates, while subsequent in situ synchrotron X‐ray powder diffraction measurements are used to study the evolution of crystalline mineral phases as a function of annealing temperature. Multiple silicate phases, including diopside, enstatite, forsterite, and SiO2, are identified, while Rietveld (i.e., structure) refinement of the diffraction data is used to quantify phase change relationships. Investigated as possible analogs for the refractory dust grain materials likely to have been present in the early solar nebula, the likely relevance of these investigations to the observed silicate compositions of chondritic meteorites and cometary bodies and the processing of their precursor materials is discussed.  相似文献   

9.
Frans J.M. Rietmeijer 《Icarus》2011,211(2):948-959
Chondrite aggregate interplanetary dust particle IDP L2011K7, collected in the Earth’s lower stratosphere, is an agglomerate of diopside, Mg,Fe-olivine, rare Fe-sulfide and abundant amorphous Mg,Fe-silicates. The overwhelming majority of amorphous silicates have a serpentine-dehydroxylate [(Mg,Fe)3Si2O7] composition; a few have a smectite-dehydroxylate [(Mg,Fe)6Si8O22] composition. The cation ratios of the amorphous silicates are notably identical to those of serpentine and smectite phyllosilicates. This paper follows the chronological changes in the amorphous silicates that include (1) formation of nanometer scale crystalline silicates (Mg,Fe-olivine and pyroxene), (2) partial hydration and formation of antigorite-serpentine proto-phyllosilicates, (3) partial dehydration of these proto-phyllosilicates, and finally oxidation and Fe-oxide formation by flash heating during atmospheric entry. Environmental conditions capable of driving these changes in the diffuse interstellar medium or solar nebula, in a comet nucleus, or in circumsolar orbit as a cometary meteoroid were marginal at best. These changes could only proceed because of the unique amorphous silicate compositions. While this study cannot make a firm statement about an interstellar or solar nebula origin for its amorphous silicates that are irradiation-induced olivine, this study does find that amorphous silicates with serpentine and (rare) smectite compositions are an important fraction of the amorphous silicates in comets in addition to amorphous olivine and pyroxene. It is noted that an ice and water-free, millimeter-scale, structurally coherent crumb would be an ample ‘microenvironment’ to evolve micrometer-scale dust. After all IDP L2011K7 only measures 22 × 17 μm.  相似文献   

10.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.  相似文献   

11.
Abstract— Spectra for certain comets show the presence of crystalline silicate dust grains believed to have been incorporated during comet formation. While grain crystallization is widely assumed to result from the thermal annealing of precursor amorphous grains, the physical processes behind the silicate amorphous‐to‐crystalline transition are poorly understood. This makes it difficult to place constraints on the evolutionary histories of both grains and comets, and consequently, on the nebular conditions in which they formed. It has, therefore, become necessary to study this process in the laboratory using simulated grain materials. In this paper, we discuss recent results from laboratory investigations into a basic amorphous MgSiO3 silicate annealed in the region of 1000 K. Our object is not to model the behavior of dust grains per se, but to study the underlying process of crystallization and separate the physics of the material from the astrophysics of dust grains. In our experiments, we bring together spectroscopic measurements made in the infrared with the high resolution structural probing capabilities of synchrotron X‐ray powder diffraction. The combined use of these complementary techniques provides insights into the crystallization process that would not be easily obtained if each was used in isolation. In particular, we focus on the extent to which the identification of certain spectral features attributed to crystalline phases extends to the physical structure of the grain material itself. Specifically, we have identified several key features in the way amorphous MgSiO3 behaves when annealed. Rather than crystallize directly to enstatite (MgSiO3) structures, in crystallographic terms, amorphous MgSiO3 can enter a mixed phase of crystalline forsterite (Mg2SiO4) and SiO2‐rich amorphous silicate where structural evolution appears to stall. Spectroscopically, the evolution of the 10 μm band does not appear to correlate directly with structural evolution, and therefore, may be a poor indicator of the degree of crystallinity. Indeed, certain features in this band may not be indicators of crystal type. However, the 20 μm band is found to be a good indicator of crystal structure. We suggest that forsterite forms from the ordering of pre‐existing regions rich in SiO4 and that this phase separation is aided by a dehydrogenation processes that results in the evolutionary stall. The implications of this work regarding future observations of comets are discussed.  相似文献   

12.
Abstract— Thermochemical equilibria are calculated in the multicomponent gas‐solution‐rock system in order to evaluate the formation conditions of fayalite, (Fe0.88–1.0Mg0.12–0)2SiO4, Fa88–100, in unequilibrated chondrites. Effects of temperature, pressure, water/rock ratio, rock composition, and progress of alteration are evaluated. The modeling shows that fayalite can form as a minor secondary and transient phase with and without aqueous solution. Fayalite can form at temperatures below ?350 °C, but only in a narrow range of water/rock ratios that designates a transition between aqueous and metamorphic conditions. Pure fayalite forms at lower temperatures, higher water/rock ratios, and elevated pressures that correspond to higher H2/H2O ratios. Lower pressure and water/rock ratios and higher temperatures favor higher Mg content in olivine. In equilibrium assemblages, fayalite usually coexists with troilite, kamacite, magnetite, chromite, Ca‐Fe pyroxene, and phyllosilicates. Formation of fayalite can be driven by changes in temperature, pressure, H2/H2O, and water/rock ratios. However, in fayalite‐bearing ordinary and CV3 carbonaceous chondrites, the mineral could have formed during the aqueous‐to‐metamorphic transition. Dissolution of amorphous silicates in matrices and/or silica grains, as well as low activities of Mg solutes, favored aqueous precipitation of fayalite. During subsequent metamorphism, fayalite could have formed through the reduction of magnetite and/or dehydration of ferrous serpentine. Further metamorphism should have caused reductive transformation of fayalite to Ca‐Fe pyroxene and secondary metal, which is consistent with observations in metamorphosed chondrites. Although bulk compositions of matrices/chondrites have only a minor effect on fayalite stability, specific alteration paths led to different occurrences, quantities, and compositions of fayalite in chondrites.  相似文献   

13.
Condensates produced in a laboratory condensation experiment of a refractory Ca-SiO-H2-O2 vapor define four specific and predictable deep metastable eutectic calciosilica compositions. The condensed nanograins are amorphous solids, including those with the stoichiometric CaSiO3 pyroxene composition. In evolving dust-condensing astronomical environments they will be highly suitable precursors for thermally supported, dust-aging reactions whereby the condensates form more complex refractory silicates, e.g., diopside and wollastonite, and calcite and dolomite carbonates. This kinetically controlled condensation experiment shows how the aging of amorphous refractory condensates could produce the same minerals that are thought to require high-temperature equilibrium condensation. We submit that evidence for this thermal annealing of dust will be the astronomical detection of silica (amorphous or crystalline) that is the common, predicted, by-product of most of these reactions.  相似文献   

14.
The rate of formation of molecular hydrogen from hydrogen atoms adsorbed on grains is analyzed, assuming that the grains are single crystals, polycrystalline or amorphous. On polycrystalline grains, and on graphite platelets, this rate could be orders of magnitude lower than on single crystal grains. The same is true for amorphous grains because there, at low temperatures, only atoms absorbed on neighboring sites can form molecules. Suitable formulae are derived and compared with the classical results for single crystal grains. Quantitative results are given for crystalline and amorphous ice, but with small changes these should also be valid for other solids. The rates for amorphous grains can approximate, within a factor of 10 or so, those for crystalline grains if the density of H atoms is high and the density of H2 molecules is low and only when the temperature of the grains satisfies a relation which for ice and graphite leads to a value in the proximity of 15–17 K. This maximum rate occurs only a degree or so above the temperature at which the grains are totally covered by an H2 layer and the reaction ceases. Furthermore, for a constant number density of grains, the rates on amorphous grains are second order while those on crystalline grains are first order. Both these circumstances predict amorphous grains to lead to H2 clouds with irregular and sharply delineated features in contrast to more uniform clouds formed on crystalline grains.  相似文献   

15.
Abstract– The interior texture and chemical and noble gas composition of 99 cosmic spherules collected from the meteorite ice field around the Yamato Mountains in Antarctica were investigated. Their textures were used to classify the spherules into six different types reflecting the degree of heating: 13 were cryptocrystalline, 40 were barred olivine, 3 were porphyritic A, 24 were porphyritic B, 9 were porphyritic C, and 10 were partially melted spherules. While a correlation exists between the type of spherule and its noble gas content, there is no significant correlation between its chemical composition and noble gas content. Fifteen of the spherules still had detectable amounts of extraterrestrial He, and the majority of them had 3He/4He ratios that were close to that of solar wind (SW). The Ne isotopic composition of 28 of the spherules clustered between implantation‐fractionated SW and air. Extraterrestrial Ar, confirmed to be present because it had a 40Ar/36Ar ratio lower than that of terrestrial atmosphere, was found in 35 of the spherules. An enigmatic spherule, labeled M240410, had an extremely high concentration of cosmogenic nuclides. Assuming 4π exposure to galactic and solar cosmic rays as a micrometeoroid and no exposure on the parent body, the cosmic‐ray exposure (CRE) age of 393 Myr could be computed using cosmogenic 21Ne. Under these model assumptions, the inferred age suggests that the particle might have been an Edgeworth‐Kuiper Belt object. Alternatively, if exposure near the surface of its parent body was dominant, the CRE age of 382 Myr can be estimated from the cosmogenic 38Ar using the production rate of the 2π exposure geometry, and implies that the particle may have originated in the mature regolith of an asteroid.  相似文献   

16.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

17.
Glass particles have been separated from the Bununu howardite microbreccia and analyzed with the electron microprobe. Preliminary SEM studies of the glass reveal fragments, spherules, teardrops, and rods: particles reminiscent of glasses recovered from the lunar surface. When plotted, individual glass analyses from both the Bununu and Malvern howardites range through the howardite group and extend into the eucrite group with the average glass compositions slightly enriched in CaO and depleted in MgO when compared with the bulk chemical analyses. These glasses presumably represent quenched, impact-melted rocks, or partial melts of the major rock types and/or matrix in Bununu and Malvern. Shock-produced features which have been observed in known terrestrial and lunar impact breccias are also present in Bununu. Crystal deformation, maskeylenite and glass veining in clasts and glass spherules and shards in the matrix point to impact brecciation as the likely mechanism to form the features observed in Bununu and other howardites.  相似文献   

18.
Abstract— We have studied both of the known glass-free, hibonite-pyroxene spherules: MYSM3, from Murray (CM2), and Y17–6, from Yamato 791717 (CO3). They consist of hibonite plates (~2 wt% TiOtot2) enclosed in Al-rich pyroxene that has such high amounts of CaTs (CaAl2SiO6) component, up to ~80 mol%, that it must have crystallized metastably. Within the pyroxene, abundances of MgO and SiO2 are strongly correlated with each other and are anticorrelated with those of Al2O3, reflecting an anticorrelation between the diopside and CaTs components of the pyroxene. In contrast with previous results for Type B fassaite, however, we do not observe an anticorrelation between MgO and TiOtot2, possibly reflecting different relative distribution coefficients for Ti3+ and Ti4+ in the aluminous pyroxene of the spherules from those found for fassaite in Type B inclusions. Previously described hibonite-silicate spherules have 26Mg deficits but the present samples do not. Furthermore, the pyroxene in Y17-6 has excess 26Mg, while the hibonite it encloses does not, indicating that the two phases either had different initial 26Al/27Al ratios or different initial 26Mg/24Mg ratios. The Ti isotopic compositions of the present samples are highly unusual: δ50Ti = 103.4 ± 5.2%o in MYSM3 and -61.4 ± 4.1%0 in Y17-6, which are among the largest 50Ti anomalies reported for any refractory inclusion. The textures suggest that hibonite crystallized first; but based on the calculated bulk compositions of both spherules, it is not the liquidus phase in either sample, which suggests that the hibonite in both samples is relict. The presence of ragged hibonite grains in MYSM3 and rounded hibonite grains in Y17-6 and a lack of isotopic equilibrium between pyroxene and hibonite support this conclusion. The spherules crystallized from liquid droplets that probably formed as a result of the melting of solid precursor grains that included hibonite. The heating events were too short and/or not hot enough to melt all the hibonite. The droplets cooled quickly enough that CaTs-rich pyroxene crystallized instead of anorthite. Based on the observed differences in isotopic composition, it is unlikely that the precursors of the present samples formed in the same reservoir as each other or as the previously described hibonite-silicate spherules, providing further evidence of the isotopic heterogeneity of the early solar nebula.  相似文献   

19.
Abstract— A preliminary investigation into the carbon isotopic composition of deep-sea spherules has been undertaken. A variety of particles have been analysed including both melted and unmelted samples of type S (stony) and type I (iron) spherules, emphasis being placed on surveying the carbon in different sorts of particles rather than analysing large numbers of samples. Some general observations can be made: there appear to be four different sorts of carbonaceous materials in the spherules. Melted and unmelted spherules of either type I or S, apparently contain two forms of low temperature combustible carbon distinguished, not by combustion temperature, but by isotopic composition. The low temperature of combustion is commensurate with these forms of carbon being organic in nature. The most likely explanation for this carbon is terrestrial biogenic contamination although there exists the possibility that there are some indigenous organic materials. Unmelted type S spherules contain a high temperature carbon component, characterised by a very minor 13C-enrichment, which is considered to be indigenous to the sample. All melted samples contain only small amounts of high temperature carbon with an isotopic composition suggestive of handling blank.  相似文献   

20.
Abstract– We have used synchrotron Fe‐XANES, XRS, microRaman, and SEM‐TEM analyses of Stardust track 41 slice and track 121 terminal area slices to identify Fe oxide (magnetite‐hematite and amorphous oxide), Fe‐Ti oxide, and V‐rich chromite (Fe‐Cr‐V‐Ti‐Mn oxide) grains ranging in size from 200 nm to ~10 μm. They co‐exist with relict FeNi metal. Both Fe‐XANES and microRaman analyses suggest that the FeNi metal and magnetite (Fe2O3FeO) also contain some hematite (Fe2O3). The FeNi has been partially oxidized (probably during capture), but on the basis of our experimental work with a light‐gas gun and microRaman analyses, we believe that some of the magnetite‐hematite mixtures may have originated on Wild 2. The terminal samples from track 121 also contain traces of sulfide and Mg‐rich silicate minerals. Our results show an unequilibrated mixture of reduced and oxidized Fe‐bearing minerals in the Wild 2 samples in an analogous way to mineral assemblages seen in carbonaceous chondrites and interplanetary dust particles. The samples contain some evidence for terrestrial contamination, for example, occasional Zn‐bearing grains and amorphous Fe oxide in track 121 for which evidence of a cometary origin is lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号