首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
隧道施工时地表沉降监测控制标准探讨   总被引:5,自引:0,他引:5  
安永林  彭立敏  张峰  吴波 《岩土力学》2009,30(Z2):446-451
地表沉降是判断浅埋隧道地层稳定的一个重要指标。在分析地表沉降监测重要性和隧道埋深的关系基础上,阐述了地表沉降控制标准确定的原则;针对隧道无邻近结构物段,从地层围岩稳定、经验公式和相关规范的角度探讨地表沉降控制标准,并以武广客运专线浏阳河隧道为例子进行验证。结果表明,城市隧道变形控制标准要比山岭隧道更严格,浅埋隧道要比深埋隧道控制标准更严格;围岩越坚硬、跨度越小、边墙高度越小,则允许的位移越小,反之则越大;允许的变形控制标准主要影响因素是围岩自身条件,其次是隧道的跨度  相似文献   

2.
王志良  刘铭  谢建斌  申林方 《岩土力学》2013,34(Z1):127-133
将隧道周围土体视为均质连续各向同性的饱和弹性介质,采用保角变换的方法将含有隧道的半无限平面映射为同心圆环计算域。根据Terzaghi-Rendulic二维固结理论,建立隧道在不透水的情况下周围土体超孔隙水压力分布的控制方程。然后,采用分离变量法计算得到土体超孔隙水压力分布的解析解,最后,根据弹性理论计算得出隧道中线上方地表固结沉降的计算公式。结合算例,分析盾构施工扰动程度、土体渗透系数、土体弹性模量及隧道埋深等因素对隧道中心上方地表处固结沉降的影响。研究结果表明,地表固结沉降的增加值与隧道外侧初始超孔隙水压力值C0的变化量成正比例关系,施工扰动程度越大所引起的固结沉降越大;土体的渗透系数越大固结沉降速度越快,但土体的渗透系数与最终的地表固结沉降量无关;土体的弹性模量越大,最终的地表固结沉降量越小;隧道埋深越深,地表固结沉降所需时间越长,最终的地表固结沉降量也越大。  相似文献   

3.
盾构施工工艺诱发地表沉降规律浅析   总被引:5,自引:2,他引:5  
在研究盾构施工工艺诱发地层沉降规律时,对施工工艺变化引起地表沉降的量化分析成果相对较少。将盾构工艺分为注浆填充率?、支护压力比? 和偏心率? 等3个主要因素,将其引入到Rowe等人提出的“间隙参数”的公式中,利用Loganathan等人提出的地表沉降预测解析公式,对上述3个工艺参数的变化对地表沉降的影响进行量化分析;同时以间隙参数为前提,对前人提出的等代层厚度参数取值进一步探讨,为复杂的盾构施工工艺的数值模拟提供计算依据。通过对西安地铁2号线试验段地表沉降实测资料进行反演,分析结果认为,提出来的间隙参数计算方法及修正等代层模型能较为真实地反应施工工艺水平,能够为盾构施工地面沉降控制提供一定的参考。  相似文献   

4.
The instantaneous response of saturated low permeability grounds to tunnel excavation is important for deformations and stability close to the tunnel face. It is characterized by zero volume change in combination with the development of excess pore pressures. In tunnelling through poor quality ground under great depth of cover and high in situ pore pressure, heavily squeezing conditions (characterized by very large convergences) may occur soon after excavation. This paper presents exact finite strain analytical solutions for the undrained ground response around cylindrical and spherical openings that are unloaded from uniform and isotropic initial stress states, on the basis of the Modified Cam Clay (MCC) model and the Mohr–Coulomb (MC) model. The solution for a Drucker–Prager material is also given as it requires only a very small modification to the MC solution. The so‐called ground response curve, that is, the relationship between the support pressure and the cavity wall displacement, is derived in closed form for the MC model. The solution for the MCC problem is semi‐analytical in that it uses the trapezium rule for the computation of a definite integral. The influence of the significant parameters of the problem on the predicted deformation behaviour is shown by means of dimensionless charts. Finally, the practical usefulness of the solutions presented is illustrated by applying them to the breccia zones of the planned Gibraltar Strait tunnel – an extreme case of weak, low permeability ground under high pore pressure. The solutions can serve as a trustworthy benchmark for numerical procedures that incorporate material and geometric nonlinearities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
《Computers and Geotechnics》2001,28(6-7):517-547
Ground surface settlement due to tunnel excavation varies in magnitude and trend depending on several factors such as tunnel geometry, ground conditions, etc. Although there are several empirical and semi-empirical formulae available for predicting ground surface settlement, most of these do not simultaneously take into consideration all the relevant factors, resulting in inaccurate predictions. In this study, an artificial neural network (ANN) is incorporated with '113' of monitored field results to predict surface settlement for a tunnel site with prescribed conditions. To achieve this, a standard format (a protocol) for a database of monitored field data is first proposed and then used for sorting out a variety of monitored data sets available in KICT. Using the capabilities of pattern recognition and memorization of the ANN, an attempt is made to capture the rich physical characteristics smeared in the database and at the same time filter inherent noise in the monitored data. Here, an optimal neural network model is suggested through preliminary parametric studies. It is shown that preliminary studies for generating an optimal ANN under given training data sets are necessary because no analytical method for this purpose is available to date. In addition, this study introduces a concept of relative strength of effects (RSE) [Yang Y, Zhang Q. A heirarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering 1997; 30(4): 207–22] in sensitivity analysis for various major factors affecting the surface settlement in tunnelling. It is seen in some examples that the RSE rationally enables us to recognize the most significant factors of all the contributing factors. Two verification examples are undertaken with the trained ANN using the database created in this study. It is shown from the examples that the ANN has adequately recognized the characteristics of the monitored data sets retaining a generality for further prediction. It is believed that an ANN based hierarchical prediction procedure shown in this paper can be further employed in many kinds of geotechnical engineering problems with inherent uncertainties and imperfections.  相似文献   

6.
7.
为了研究隧洞纵向位移(LDP)释放率对双护盾隧洞掘进机(TBM)围岩变形及护盾压力的影响,在FLAC3D中采用应力释放法对LDP曲线实现了较好的控制,并指出采用计算时间步控制的缺陷,在考虑护盾与围岩之间不均匀间隙情况下,详细分析了应力释放率对TBM掘进中围岩LDP曲线变化规律、护盾所受挤压力及围岩塑性区的影响。得出了以下结论:(1)不同岩体力学参数下,LDP曲线受应力释放率的敏感程度不同;(2)随着应力释放率的逐渐增加,围岩LDP曲线特征及与TBM护盾相互接触的部位有所不同,TBM护盾接触挤压力和所受摩擦阻力逐渐增大;(3)护盾外围塑性区的形状与应力释放率和护盾与围岩之间的不均匀间隙有关,当在较大的应力释放率下,塑性区呈现自上而下逐渐减小的特征。  相似文献   

8.
朱忠隆  孙钧  张庆贺 《岩土力学》2005,26(6):896-900
在对盾构施工变形规律认识的基础上,引入了智能控制学科的思想与方法,采用模糊逻辑控制技术建立了变形的智能模糊逻辑控制系统模型,并进一步在地铁盾构法区间隧道工程中进行了初步实证研究。控制分析结果表明,采用本文提出的理论控制模型能够实现定量化盾构诸施工参数的主动与实时控制。  相似文献   

9.
预制桩的沉桩过程产生了对桩周土体的挤密作用,桩周土体的力学特性发生了相应的改变,这种改变会直接影响预制桩桩基础的承载力。利用有限元计算分析方法对砂性土地基预制桩沉桩过程进行了数值求解,得到了桩周土体的位移和应力变化规律;在应力路径控制的三轴试验中,模拟土体在受到预制桩沉桩影响的应力状态,试验研究了标准砂在再受荷载作用时的力学特性;在荷载传递法中,运用桩周土体性质的变化试验结果,进行了有限差分数值分析,得到了考虑和不考虑挤土作用的单桩P-S曲线。研究结果表明:预制桩的沉桩过程对桩周土中的径向和轴向应力都有明显的影响,对径向应力的影响大于对轴向应力的影响;挤土效应提高了桩周土的剪切模量值和强度,影响范围大致相当;考虑沉桩侧向挤土影响单桩承载特性有明显的提高,现行的预制桩设计偏于安全。  相似文献   

10.
The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The influence of the lining joint pattern, including segmental lining joints and their connections, has in particular been taken into consideration. The impact of the processes during mechanized excavation, such as the grouting pressure and the jacking forces in the structural forces induced in the tunnel lining, has been presented. These values depend on the tunnel advancement. However, a negligible influence of the joint pattern on the ground displacement field surrounding the tunnel has been observed. Generally, a variation in the structural forces in successive rings along the tunnel axis has been found in a staggered segmental lining, indicating the necessity of simulating the joints in the tunnel lining and using a full three-dimensional numerical model to obtain an accurate estimation. In addition, the considerable influence of the coupling effect between successive rings on the lining behaviour has been highlighted.  相似文献   

11.
The ground response to tunnel excavation is usually described in terms of the characteristic line of the ground (also called ‘ground response curve’, GRC), which relates the support pressure to the displacement of the tunnel wall. Under heavily squeezing conditions, very large convergences may take place, sometimes exceeding 10–20% of the excavated tunnel radius, whereas most of the existing formulations for the GRC are based on the infinitesimal deformation theory. This paper presents an exact closed‐form analytical solution for the ground response around cylindrical and spherical openings unloaded from isotropic and uniform stress states, incorporating finite deformations and linearly elastic‐perfectly plastic rock behaviour obeying the Mohr–Coulomb failure criterion with a non‐associated flow rule. Additionally, the influence of out‐of‐plane stress in the case of cylindrical cavities under plane‐strain conditions is examined. The solution is presented in the form of dimensionless design charts covering the practically relevant parameter range. Finally, an application example is included with reference to a section of the Gotthard Base tunnel crossing heavily squeezing ground. The expressions derived can be used for preliminary convergence assessments and as valuable benchmarks for finite strain numerical analyses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
为研究挤压地层双护盾隧道掘进机(TBM)作用下围岩变形及应力场特征,采用FLAC3D建立了完整模型,并详细阐述了隧道掘进机(TBM)施工过程中的模拟方法,重点分析了隧洞纵横断面内围岩位移场、应力场、塑性区特征。模拟结果表明,两腰下部范围内的围岩与TBM护盾发生接触并产生挤压,拱顶并未接触;受刀盘与护盾连接处的尺寸高差和前后护盾的锥度影响导致仰拱围岩内出现3次加卸载,仰拱内部环向应力和径向应力均大于拱顶和两腰,而且其主应力方向与径向线斜交,受扰动剧烈,但仰拱下方70°范围内的围岩基本处于弹性状态;横向断面内围岩塑性区自上而下逐渐减小,且距掌子面越远塑性区范围越大,但后盾塑性区范围变化不大。  相似文献   

14.
Estimation of rock load is a very important issue because the selection of a support system is highly related to this parameter. Several methods are used to estimate this parameter such as experimental, empirical, and numerical methods. This study propose a new empirical method to estimate the rock load in squeezing ground condition using actual collapses data of Emamzade Hashem tunnel of Iran based on the ration of the post-failure residual strain energy to the pre-failure stored strain energy. Prediction of squeezing ground condition in this study is performed based on Jethwa, Singh, and Hoek criterions. Results show that some sections in shale and sandstone of the Shemshak formation are prone to squeezing. Finally, the relation between the rock load and the ratio of the post-failure residual strain energy to the pre-failure stored strain energy, Ψ, in squeezing ground condition is estimated. Based on the statistical analysis, the maximum correlation between both parameters is achieved when Alejano’s equations are used to estimate the drop modulus. As the rock mass behavior changes from elastic–plastic to elastic–brittle, the drop modulus changes from 0 to infinite. The reason is that by increasing the quality of rock mass and reducing the minimum principal stresses, the ratio of post-failure residual strain energy to pre-failure stored strain energy and rock load height (H p) reduce. So, regression analysis is used to investigate the relation between the rock load height and the ratio of post-failure residual strain energy to pre-failure stored strain energy, and finally, a formulation is presented to determine rock load height based on power function.  相似文献   

15.
This paper generalizes the finite strain Coulomb solution of Vrakas and Anagnostou (Int J Numer Anal Meth Geomech 2014; 38(11): 1131–1148) for the classic tunnel mechanics problem of the ground response curve to elastoplastic grounds satisfying a non‐linear Mohr's failure criterion. A linear (Coulomb‐type) plastic potential function is used, leading to a non‐associated flow law, and edge plastic flow is considered in the plastic zone. The solution for a general non‐linear Mohr's failure criterion is semi‐analytical in that it requires the evaluation of definite integrals. In the special case of the Hoek–Brown criterion, however, these integrals are calculated analytically, resulting in a rigorous closed‐form series solution. The applicability of the derived solution is illustrated through the example of the Yacambú‐Quibor tunnel, where very large deformations were observed when crossing of weak graphitic phyllites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Summary In fault zones, excessive deformation during and after tunnel excavation is frequently encountered. Shoterete in combination with grouted rock bolts has successfully been used in many applications to control the deformation process. The magnitude of deformation frequently exceeds the deformability of the shotcrete lining. In the past, this problem has been solved by dividing the shotcrete lining into segments and leaving gaps between the segments to accommodate deformation without damage to the lining. The need for minimizing deformation in an extremely heterogeneous fault zone at the Galgenbergtunnel (Austria) led to the development of low cost yielding elements, installed between the shotcrete segments and the use of a new type of re-groutable brock bolts. New techniques in evaluating the results of displacement monitoring have improved the short term prediction.  相似文献   

17.
Summary In this paper, the phenomenon of swelling in tunnelling will be treated as a hydraulic-mechanical coupled process. This approach allows one to model the observed floor heaves realistically, i. e. without the prediction inevitable in the previous models of movements at the tunnel crown and walls. Furthermore, the development of heave and pressure over the course of time can be studied. The absence of deformations above the floor level is here interpreted as a consequence of the hydraulic boundary conditions. Besides the importance of seepage flow, the influence of rock strength is illustrated. Swelling rock is considered as an elastoplastic material. This allows one to predict the often large haaves of a tunnel floor as observed in situ. According to the numerical results, the area of practically relevant swelling strains extends as far as the plastic zone.  相似文献   

18.
Summary Squeezing rock conditions have posed and continue to pose a major obstacle to the construction of tunnels through mountains, as experience dating back more than a century shows. The paper deals with the study of past experiences in the light of present geotechnical engineering knowledge. Many of the transalpine tunnels were constructed before geotechnical engineering had been developed, and the principles underlying squeezing were not yet understood. Also construction techniques have changed with time. By studying past experience in the light of our present knowledge in geotechnical engineering (rock and soil mechanics), one may gain more insight into the nature and causes of squeezing ground behaviour. Here, a number of older and newer case histories are summarised, providing substantial insight into the phenomenon of squeezing rock. Squeezing rock behaviour is influenced by rock type and structure. Usually, in squeezing zones the rock is strongly jointed and fractured and has low strength. Overburden has also a significant effect and squeezing behaviour may occur abruptly in a tunnel once a limiting overburden has been exceeded. Water pressures in strongly jointed and often crushed rock are important and so are the adopted construction procedures and sequences. A support of substantial structural strength may be necessary to prevent long-term deformations and to withstand increased loading on the tunnel liner from the rock mass surrounding the tunnel.  相似文献   

19.
Soil-structure interaction in shield tunnelling in soft soil   总被引:1,自引:0,他引:1  
The development and extension of large cities creates a need for multiple shallow tunnels in the soft ground of building areas. Prediction of the ground settlement caused by the tunnel excavation is a major engineering challenge. A numerical simulation using a finite element method was implemented in the aim of developing a procedure to predict the movement induced by shield tunnelling in soft soil. This study describes a two-dimensional modelling and compares two procedures. The first procedure is done in a simple way (called “deconfinement modelling”) simulating the excavation using a stress decrease vector exerted on the excavation boundary (inside the tunnel) described by a stress release scalar parameter λ (named the “deconfinement factor”). The second procedure is composed of a complete stage of modelling (called “phase modelling”) taking into account different phases which simulate the different kinds of interactions between the tunnel and the soil (deconfinement, lining installation, pore pressure applied on the lining, and weight of the lining). Using a shallow lined tunnel with homogeneous soil conditions, the two procedures are analysed and compared. Then, the second modelling procedure is applied to the case of the metro of Lyon where field data have been obtained. Observations of the results and comparison with the experimental data demonstrate that the proposed modelling is adequate for the analyses of settlement induced by tunnelling in soft soil.  相似文献   

20.
采用Loganathan公式研究了盾构隧道下穿管道施工引起的地下管道处土体竖向位移,利用考虑土中剪力传递的Pasternak模型模拟管-土相互作用,运用修正Vlasov模型中的迭代流程计算出Pasternak模型的关键参数——弹性系数k与剪切系数gs。将计算结果与已有文献结果及工程监测数据进行对比,深入分析了迭代求解k、gs值的Pasternak模型与传统模型的计算差异,并进一步研究了土中剪力、管道与隧道的夹角、土体弹性模量及隧道半径的变化对管-土相互作用的影响。研究结果表明:迭代求解的k、gs值能提升Pasternak模型的精确度;土中剪力对管道竖向位移计算值的影响可达15.3%;随着管道与隧道夹角的减小,管道的竖向位移增大、弯矩减小;土体弹性模量与隧道半径的增大均会增加管道的竖向位移和弯矩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号