首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
In earlier publications, certain applications of space transformation operators in subsurface hydrology were considered. These operators reduce the original multi-dimensional problem to the one-dimensional space, and can be used to study stochastic partial differential equations governing groundwater flow and solute transport processes. In the present work we discuss developments in the theoretical formulation of flow models with space-dependent coefficients in terms of space transformations. The formulation is based on stochastic Radon operator representations of generalized functions. A generalized spectral decomposition of the flow parameters is introduced, which leads to analytically tractable expressions of the space transformed flow equation. A Plancherel representation of the space transformation product of the head potential and the log-conductivity is also obtained. A test problem is first considered in detail and the solutions obtained by means of the proposed approach are compared with the exact solutions obtained by standard partial differential equation methods. Then, solutions of three-dimensional groundwater flow are derived starting from solutions of a one-dimensional model along various directions in space. A step-by-step numerical formulation of the approach to the flow problem is also discussed, which is useful for practical applications. Finally, the space transformation solutions are compared with local solutions obtained by means of series expansions of the log-conductivity gradient.  相似文献   

3.
In this paper, spatial variability in steady one-dimensional unconfined groundwater flow in heterogeneous formations is investigated. An approach to deriving the variance of the hydraulic head is developed using the nonlinear filter theory. The nonlinear governing equation describing the one-dimensional unconfined groundwater flow is decomposed into three linear partial differential equations using the perturbation method. The linear and quadratic frequency response functions are obtained from the first- and second-order perturbation equations using the spectral method. Furthermore, under the assumption of the exponential covariance function of log hydraulic conductivity, the analytical solutions of both the spectrum and the variance of the hydraulic head produced from the linear system are derived. The results show that the variance derived herein is less than that of Gelhar (1977). The reason is that the log transmissivity is linearized in Gelhars work. In addition, the analytical solutions of both the spectrum and the variance of the hydraulic head produced from the quadratic system are derived as well. It is found that the correlation scale and the trend in mean of log hydraulic conductivity are important to the dimensionless variance ratio.  相似文献   

4.
This paper develops concepts and methods to study stochastic hydrologic models. Problems regarding the application of the existing stochastic approaches in the study of groundwater flow are acknowledged, and an attempt is made to develop efficient means for their solution. These problems include: the spatial multi-dimensionality of the differential equation models governing transport-type phenomena; physically unrealistic assumptions and approximations and the inadequacy of the ordinary perturbation techniques. Multi-dimensionality creates serious mathematical and technical difficulties in the stochastic analysis of groundwater flow, due to the need for large mesh sizes and the poorly conditioned matrices arising from numerical approximations. An alternative to the purely computational approach is to simplify the complex partial differential equations analytically. This can be achieved efficiently by means of a space transformation approach, which transforms the original multi-dimensional problem to a much simpler unidimensional space. The space transformation method is applied to stochastic partial differential equations whose coefficients are random functions of space and/or time. Such equations constitute an integral part of groundwater flow and solute transport. Ordinary perturbation methods for studying stochastic flow equations are in many cases physically inadequate and may lead to questionable approximations of the actual flow. To address these problems, a perturbation analysis based on Feynman-diagram expansions is proposed in this paper. This approach incorporates important information on spatial variability and fulfills essential physical requirements, both important advantages over ordinary hydrologic perturbation techniques. Moreover, the diagram-expansion approach reduces the original stochastic flow problem to a closed set of equations for the mean and the covariance function.  相似文献   

5.
This paper develops concepts and methods to study stochastic hydrologic models. Problems regarding the application of the existing stochastic approaches in the study of groundwater flow are acknowledged, and an attempt is made to develop efficient means for their solution. These problems include: the spatial multi-dimensionality of the differential equation models governing transport-type phenomena; physically unrealistic assumptions and approximations and the inadequacy of the ordinary perturbation techniques. Multi-dimensionality creates serious mathematical and technical difficulties in the stochastic analysis of groundwater flow, due to the need for large mesh sizes and the poorly conditioned matrices arising from numerical approximations. An alternative to the purely computational approach is to simplify the complex partial differential equations analytically. This can be achieved efficiently by means of a space transformation approach, which transforms the original multi-dimensional problem to a much simpler unidimensional space. The space transformation method is applied to stochastic partial differential equations whose coefficients are random functions of space and/or time. Such equations constitute an integral part of groundwater flow and solute transport. Ordinary perturbation methods for studying stochastic flow equations are in many cases physically inadequate and may lead to questionable approximations of the actual flow. To address these problems, a perturbation analysis based on Feynman-diagram expansions is proposed in this paper. This approach incorporates important information on spatial variability and fulfills essential physical requirements, both important advantages over ordinary hydrologic perturbation techniques. Moreover, the diagram-expansion approach reduces the original stochastic flow problem to a closed set of equations for the mean and the covariance function.  相似文献   

6.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

7.
Within the framework of stochastic theory and the spectral perturbation techniques, three-dimensional dispersion in partially saturated soils with fractal log hydraulic conductivity distribution is analyzed. Our analysis is focused on the impact of fractal dimension of log hydraulic conductivity distribution, local dispersivity, and unsaturated flow parameters, such as the soil poresize distribution parameter and the moisture distribution parameter, on the spreading behavior of solute plume and the concentration variance. Approximate analytical solutions to the stochastic partial differential equations are derived for the variance of asymptotic solute concentration and asymptotic macrodispersivities.  相似文献   

8.
Density-dependent flow and transport solutions for coastal saltwater intrusion investigations, analyses of fluid injection into deep brines, and studies of convective fingering and instabilities of denser fluids moving through less dense fluids typically formulate the groundwater flow equation in terms of pressure or equivalent freshwater head. A formulation of the flow equation in terms of hydraulic head is presented here as an alternative. The hydraulic-head formulation can facilitate adaptation of existing constant-density groundwater flow codes to include density-driven flow by avoiding the need to convert between freshwater head and hydraulic head within the code and by incorporating density-dependent terms as a compartmentalized “correction” to constant-density calculations already performed by the code. The hydraulic-head formulation also accommodates complexities such as unconfined groundwater flow and Newton-Raphson solution schemes more readily than the freshwater-head formulation. Simulation results are presented for four example problems solved using an implementation of the hydraulic-head formulation in MODFLOW.  相似文献   

9.
Two methods for the solution of partial differential equations (PDE) for the general case of random in time physical parameters are presented and their application to the solution of unsteady regional groundwater flow equations are illustrated. The first method is the semigroup approach which directly offers a solution without resorting to closure approximations (hierarchy techniques), perturbation techniques, or Montecarlo simulation techniques. The semigroup approach can also handle the general stochastic problem when randomness also appears as initial conditions, boundary conditions or forcing terms. The second method is an approximation scheme to obtain the semigroup solution in complex cases and permits the solution of equations with more than one random coefficient.  相似文献   

10.
In this study, the KLME approach, a moment-equation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random fields with known means and covariance functions. The F, R, H and Q are first decomposed into finite series in terms of Gaussian standard random variables by the Karhunen–Loeve expansion. The hydraulic head h is then represented by a perturbation expansion, and each term in the perturbation expansion is written as the products of unknown coefficients and Gaussian standard random variables obtained from the Karhunen–Loeve expansions. A series of deterministic partial differential equations are derived from the stochastic partial differential equations. The resulting equations for uncorrelated and perfectly correlated cases are developed. The equations can be solved sequentially from low to high order by the finite element method. We examine the accuracy of the KLME approach for the groundwater flow subject to uncorrelated or perfectly correlated random inputs and study the capability of the KLME method for predicting the head variance in the presence of various spatially variable parameters. It is shown that the proposed numerical model gives accurate results at a much smaller computational cost than the Monte Carlo simulation.  相似文献   

11.
Non-local stochastic moment equations are used successfully to analyze groundwater flow in randomly heterogeneous media. Here we present a moment equations-based approach to quantify the uncertainty associated with the estimation of well catchments. Our approach is based on the development of a complete second order formalism which allows obtaining the first statistical moments of the trajectories of conservative solute particles advected in a generally non-uniform groundwater flow. Approximate equations of moments of particles’ trajectories are then derived on the basis of a second order expansion in terms of the standard deviation of the aquifer log hydraulic conductivity. Analytical expressions are then obtained for the predictors of locations of mean stagnation points, together with their associated uncertainties. We implement our approach on heterogeneous media in bounded two-dimensional domains, with and without including the effect of conditioning on hydraulic conductivity information. The impact of domain size, boundary conditions, heterogeneity and non-stationarity of hydraulic conductivity on the prediction of a well catchment is explored. The results are compared against Monte Carlo simulations and semi-analytical solutions available in the literature. The methodology is applicable to both infinite and bounded domains and is free of distributional assumptions (and so applies to both Gaussian and non-Gaussian log hydraulic conductivity fields) and formally includes the effect of conditioning on available information.  相似文献   

12.
《水文科学杂志》2013,58(4):700-712
Abstract

The groundwater flow equation governing the elevation (h) of the steady-state phreatic surface in a sloping aquifer fed by constant recharge over a bi-circular sector is rhh′ ? r 2 Bh′ + Pr 2 ? PR 2 = 0, where r is the radial coordinate, P is a constant involving recharge and aquifer properties, and B is the slope of the aquifer—bedrock boundary. The derived flow equation describes radially convergent flow through a sloping aquifer that discharges to a water body of fixed head. One important simplification is that in which the width of the bi-circular sector is constant, and the draining land becomes a rectangular aquifer. The bi-circular sector and rectangular-strip groundwater flow problems are solved in terms of implicit equations. The solutions for the steady-state phreatic surfaces depend on the ratio of recharge to hydraulic conductivity, the slope of the aquifer-bedrock, and the downstream constant-head boundary. Computational examples illustrate the application of the solutions.  相似文献   

13.
A numerical approach for approximating statistical moments of hydraulic heads of variably saturated flows in multi-dimensional porous media is developed. The approximation relies on a first-order Taylor series expansion of a finite element flow model and an adjoint state numerical method for variably saturated flows to evaluate sensitivities. This approach can be employed to analyze uncertainties associated with predictions of head of steady-state or transient flows in variably saturated porous media, with any type of boundary and initial conditions. Limitations of stochastic analytical methods such as spectral/perturbation approaches and the time-consuming Monte Carlo simulation technique are thus alleviated. An example is given to demonstrate the utility of the approach and to investigate the temporal evolution of head variances in a variably saturated flow regime. Results show that the fluctuation of the water table can have significant impacts on the propagation of the head variance.  相似文献   

14.
This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier–Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589–605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541–51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775–84].  相似文献   

15.
We present a diagrammatic method for solving stochastic 1-D and 2-D steady-state flow equations in bounded domains. The diagrammatic method results in explicit solutions for the moments of the hydraulic head. This avoids certain numerical constraints encountered in realization-based methods. The diagrammatic technique also allows for the consideration of finite domains or large fluctuations, and is not restricted by distributional assumptions. The results of the method for 1-D and 2-D finite domains are compared with those obtained through a realization-based approach. Mean and variance of head are well reproduced for all log-conductivity variances inputted, including those larger than one. The diagrammatic results also compare favorably to hydraulic head moments derived by standard analytic methods requiring a linearized form of the flow equation.  相似文献   

16.
We present a diagrammatic method for solving stochastic 1-D and 2-D steady-state flow equations in bounded domains. The diagrammatic method results in explicit solutions for the moments of the hydraulic head. This avoids certain numerical constraints encountered in realization-based methods. The diagrammatic technique also allows for the consideration of finite domains or large fluctuations, and is not restricted by distributional assumptions. The results of the method for 1-D and 2-D finite domains are compared with those obtained through a realization-based approach. Mean and variance of head are well reproduced for all log-conductivity variances inputted, including those larger than one. The diagrammatic results also compare favorably to hydraulic head moments derived by standard analytic methods requiring a linearized form of the flow equation.  相似文献   

17.
In this paper we present a reliable algorithm, the homotopy perturbation method, to construct numerical solutions of the space–time fractional advection–dispersion equation in the form of a rapidly convergent series with easily computable components. Fractional advection–dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by fluid flow in a porous medium. The fractional derivatives are described in the Caputo sense. Some examples are given. Numerical results show that the homotopy perturbation method is easy to implement and accurate when applied to space–time fractional advection–dispersion equations.  相似文献   

18.
A new computer program, 1DTempPro, is presented for the analysis of vertical one‐dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2‐Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat‐transport equations. Pre‐ and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface‐water exchange and also hydraulic conductivity for cases where hydraulic head is known.  相似文献   

19.
We consider the problem of upscaling transient real gas flow through heterogeneous bounded reservoirs. One of the commonly used methods for deriving effective permeabilities is based on stochastic averaging of nonlinear flow equations. Such an approach, however, would require rather restrictive assumptions about pressure-dependent coefficients. Instead, we use Kirchhoff transformation to linearize the governing stochastic equations prior to their averaging. The linearized problem is similar to that used in stochastic analysis of groundwater flow. We discuss the effects of temporal localization of the nonlocal averaged Darcy's law, as well as boundary effects, on the upscaled gas permeability. Extension of the results obtained by means of small perturbation analysis to highly heterogeneous porous formations is also discussed.  相似文献   

20.
 3D groundwater flow at the fractured site of Asp? (Sweden) is simulated. The aim was to characterise the site as adequately as possible and to provide measures on the uncertainty of the estimates. A stochastic continuum model is used to simulate both groundwater flow in the major fracture planes and in the background. However, the positions of the major fracture planes are deterministically incorporated in the model and the statistical distribution of the hydraulic conductivity is modelled by the concept of multiple statistical populations; each fracture plane is an independent statistical population. Multiple equally likely realisations are built that are conditioned to geological information on the positions of the major fracture planes, hydraulic conductivity data, steady state head data and head responses to six different interference tests. The experimental information could be reproduced closely. The results of the conditioning are analysed in terms of ensemble averaged average fracture plane conductivities, the ensemble variance of average fracture plane conductivities and the statistical distribution of the hydraulic conductivity in the fracture planes. These results are evaluated after each conditioning stage. It is found that conditioning to hydraulic head data results in an increase of the hydraulic conductivity variance while the statistical distribution of log hydraulic conductivity, initially Gaussian, becomes more skewed for many of the fracture planes in most of the realisations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号