首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper estimates the relative frequency of different types of core-collapse supernovae, in terms of the ratio between the number of Type Ib–Ic and of Type II supernovae. We estimate independently for all normal and Seyfert galaxies whose radial velocity is ≤14 000 km s−1, and which had at least one supernova event recorded in the Asiago catalogue from 1986 January to 2000 August. We find that the ratio is  ≈0.23±0.05  in normal galaxies. This value is consistent with constant star formation rate and with a Salpeter initial mass function and an average binary rate ≈50 per cent. On the contrary, Seyfert galaxies exceed the ratio in normal galaxies by a factor ≈4 at a confidence level ≳2 σ . A caveat is that the numbers for Seyferts are still small (six of Type Ib–Ic and six of Type II supernovae discovered as yet). Assumed to be real, this excess of Type Ib/c supernovae may indicate a burst of low-age star formation  ( τ ≲20 Myr)  , a high incidence of binary systems in the inner regions  ( r ≲0.4 R 25)  of Seyfert galaxies, or a top-loaded mass function.  相似文献   

2.
Using results from structural analysis of a sample of nearly 1000 local galaxies from the Sloan Digital Sky Survey, we estimate how the mass in central black holes is distributed amongst elliptical galaxies, classical bulges and pseudo-bulges, and investigate the relation between their stellar masses and central stellar velocity dispersion σ. Assuming a single relation between elliptical galaxy/bulge mass, M Bulge, and central black hole mass, M BH, we find that  55+8−4  per cent of the mass in black holes in the local universe is in the centres of elliptical galaxies,  41+4−2  per cent in classical bulges and  4+0.9−0.4  per cent in pseudo-bulges. We find that ellipticals, classical bulges and pseudo-bulges follow different relations between their stellar masses and σ, and the most significant offset occurs for pseudo-bulges in barred galaxies. This structural dissimilarity leads to discrepant black hole masses if single   M BH– M Bulge  and   M BH–σ  relations are used. Adopting relations from the literature, we find that the   M BH–σ  relation yields an estimate of the total mass density in black holes that is roughly 55 per cent larger than if the   M BH– M Bulge  relation is used.  相似文献   

3.
An analysis is presented of the power spectrum of X-ray variability of the bright Seyfert 1 galaxy Mrk 766 as observed by XMM–Newton . Over the 0.2–10 keV energy range the power spectral density (PSD) is well-represented by a power-law with a slope of  αlow≈ 1  at low frequencies, breaking to a slope of  αhi= 2.8+0.2−0.4  at a frequency   f br≈ 5 × 10−4 Hz  . As has been noted before, this broken power-law PSD shape is similar to that observed in the Galactic black hole candidate Cygnus X-1. If it is assumed that Mrk 766 shows a power spectrum similar in form to that of Cyg X-1, and that the break time-scale scales linearly with black hole mass, then the mass of the black hole in Mrk 766 is inferred to be  ≲ 5 × 105 M  . This rather low mass would mean Mrk 766 radiates above the Eddington limit. The coherence between different energy bands is significantly below unity implying that variations in the different energy bands are rather poorly correlated. The low coherence can be explained in the framework of standard Comptonization models if the properties of the Comptonizing medium are rapidly variable or if there are several distinct emission sites.  相似文献   

4.
Stellar velocity dispersion in narrow-line Seyfert 1 galaxies   总被引:1,自引:0,他引:1  
Several authors have recently explored, for narrow-line Seyfert 1 galaxies (NLS1s), the relationship between black hole mass ( M BH) and stellar velocity dispersion (σ*). Their results are more or less in agreement and seem to indicate that NLS1s fill the region below the fit obtained by Tremaine et al., showing a range of σ* similar to that of Seyfert 1 galaxies, and a lower M BH. Until now, the [O  iii ] width has been used in place of the stellar velocity dispersion, but some indications have begun to arise against the effectiveness of the gaseous kinematics in representing the bulge potential, at least in NLS1s. Bian & Zhao have stressed the urgency of producing true σ* measurements. Here, we present new stellar velocity dispersions obtained through direct measurements of the Ca  ii absorption triplet (∼8550 Å) in the nuclei of eight NLS1 galaxies. The resulting σ* values and a comparison with σ[O III] confirm our suspicion that [O  iii ] typically overestimates the stellar velocity dispersion. We demonstrate that NLS1s follow the   M BH–σ*  relation as Seyfert 1, quasars and non-active galaxies.  相似文献   

5.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

6.
We present an X-ray spectroscopic study of the bright Compton-thick Seyfert 2 galaxies NGC 1068 and the Circinus Galaxy, performed with BeppoSAX . Matt et al. interpreted the spectrum above 4 keV as the superposition of Compton reflection and warm plasma scattering of the nuclear radiation. When this continuum is extrapolated downwards to 0.1 keV, further components arise. The NGC 1068 spectrum is rich in emission lines, mainly owing to K α transitions of He-like elements from oxygen to iron, plus a K α fluorescent line from neutral iron. If the ionized lines originate in the warm scatterer, its thermal and ionization structure must be complex. From the continuum and line properties, we estimate a column density, N warm, of the warm scatterer less than a few×1021 cm−2. In the Circinus Galaxy, the absence of highly ionized iron is consistent with a scattering medium with U X≲5 and N warm∼ a few×1022 cm−2. In both cases the neutral iron line is most naturally explained as fluorescence in the medium responsible for the Compton reflection continuum. In NGC 1068 an optically thin plasma emission with kT ≃500 eV and strongly sub-solar metallicity is required, while such a component is only marginal in the Circinus Galaxy. We tentatively identify this component as emission of diffuse hot gas in the nuclear starbursts. Possible causes for the metal depletion are discussed.  相似文献   

7.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

8.
It has been found that the near-infrared flux variations of Seyfert galaxies satisfy relations of the form   Fi ≈α i j i j Fj   , where Fi , Fj are the fluxes in filters i and j ; and  α i , j , β i , j   are constants. These relations have been used to estimate the constant contributions of the non-variable underlying galaxies. The paper attempts a formal treatment of the estimation procedure, allowing for the possible presence of a third component, namely non-variable hot dust. In an analysis of a sample of 38 Seyfert galaxies, inclusion of the hot dust component improves the model fit in approximately half the cases. All derived dust temperatures are below 300 K, in the range 540–860 K or above 1300 K. A noteworthy feature is the estimation of confidence intervals for the component contributions: this is achieved by bootstrapping. It is also pointed out that the model implies that such data could be fruitfully analysed in terms of principal components.  相似文献   

9.
We report the detection of a 5.8 Å– 104 s periodicity in the 0.5–10 keV X-ray light curve of the Seyfert galaxy IRAS 18325–5926, obtained from a 5-d ASCA observation. Nearly nine cycles of the periodic variation are seen; it shows no strong energy dependence and has an amplitude of about 15 per cent. Unlike most other well-studied Seyfert galaxies, there is no evidence for strong power-law red noise in the X-ray power spectrum of IRAS 18325–5926. Scaling from the QPOs found in Galactic black hole candidates suggests that the mass of the black hole in IRAS 18325–5926 is ∼ 6 Å– 106–4 Å– 107 M.  相似文献   

10.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

11.
We present the results of a search for strong H α emission line galaxies (rest frame equivalent widths greater than 50 Å) in the z ≈0.23 cluster Abell 2390. The survey contains 1189 galaxies over 270 arcmin2, and is 50 per cent complete at M r ≈−17.5+5 log  h . The fraction of galaxies in which H α is detected at the 2 σ level rises from 0.0 in the central regions (excluding the cD galaxy) to 12.5±8 per cent at R 200. For 165 of the galaxies in our catalogue, we compare the H α equivalent widths with their [O  ii ] λ 3727 equivalent widths, from the Canadian Network for Observational Cosmology (CNOC1) spectra. The fraction of strong H α emission line galaxies is consistent with the fraction of strong [O  ii ] emission galaxies in the CNOC1 sample: only 2±1 per cent have no detectable [O  ii ] emission and yet significant (>2 σ ) H α equivalent widths. Dust obscuration, non-thermal ionization, and aperture effects are all likely to contribute to this non-correspondence of emission lines. We identify six spectroscopically 'secure' k+a galaxies [ W 0(O  ii )<5 Å and W 0(H δ )≳5 Å]; at least two of these show strong signs in H α of star formation in regions that are covered by the slit from which the spectra were obtained. Thus, some fraction of galaxies classified as k+a based on spectra shortward of 6000 Å are likely to be undergoing significant star formation. These results are consistent with a 'strangulation' model for cluster galaxy evolution, in which star formation in cluster galaxies is gradually decreased, and is neither enhanced nor abruptly terminated by the cluster environment.  相似文献   

12.
Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is  67.7 ± 8 km s−1  . The supermassive black hole (SMBH) mass is about  (1–4) × 106 M  if it follows the well-known   M BH–σ*  relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1–4)  × 106 M  implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27–108 Hz found in Galactic black hole binaries with a  10-M  black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is  0.0163 ± 0.0011  Gyr−1, the stellar mass in the logarithm is  10.155 ± 0.06  in units of solar mass and the current star formation rate is  0.23 ± 0.016 M yr−1  . For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [O  ii ] luminosity come from the star formation process.  相似文献   

13.
We present the results of a study which uses the 3C RR sample of radio-loud active galactic nuclei to investigate the evolution of the black hole:spheroid mass ratio in the most massive early-type galaxies from  0 < z < 2  . Radio-loud unification is exploited to obtain virial (linewidth) black hole mass estimates from the 3C RR quasars, and stellar mass estimates from the 3C RR radio galaxies, thereby providing black hole and stellar mass estimates for a single population of early-type galaxies. At low redshift  ( z ≲ 1)  , the 3C RR sample is consistent with a black hole:spheroid mass ratio of   M bh/ M sph≃ 0.002  , in good agreement with that observed locally for quiescent galaxies of similar stellar mass  ( M sph≃ 5 × 1011 M)  . However, over the redshift interval  0 < z < 2  the 3C RR black hole:spheroid mass ratio is found to evolve as   M bh/ M sph∝ (1 + z )2.07±0.76  , reaching   M bh/ M sph≃ 0.008  by redshift   z ≃ 2  . This evolution is found to be inconsistent with the local black hole:spheroid mass ratio remaining constant at a moderately significant level (98 per cent). If confirmed, the detection of evolution in the 3C RR black hole:spheroid mass ratio further strengthens the evidence that, at least for massive early-type galaxies, the growth of the central supermassive black hole may be completed before that of the host spheroid.  相似文献   

14.
NGC 3783 is a nearby SBa, type 1 Seyfert galaxy. We present H  i and radio continuum images of the galaxy made with the Australia Telescope Compact Array (ATCA). We find that NGC 3783 has an H  i mass of 8.4×109 M, an H  i diameter of 1.9 D 0 ( D 0=37 kpc for h =0.5), and a nuclear depression in the H  i surface density. The H  i rotation curve is dominated by differential rotation, with little evidence of warping. The rotation curve suggests a mass-to-light ratio M L B =7.2 and a bar-pattern speed of 19±7 km s−1 kpc−1. The total mass of gas in the inner 50 arcsec is ≳10 per cent of the dynamical mass, and consistent with models that require significant gas content to fuel the Seyfert nucleus. There is no evidence that the nuclear activity in NGC 3783 is being stimulated by an interaction or merger: it may be a self-generated, perhaps bar-driven, process.  相似文献   

15.
We present new R -band photometric data for 447 galaxies, gathered for the 'Streaming Motions of Abell Clusters' (SMAC) project. The data comprise 629 individual measurements of the Fundamental Plane (FP) parameters effective radius ( R e) and surface brightness (〈 μ 〉e), derived from r 1/4-law profile fitting. More than a third of the galaxies were observed more than once. The photometric precision is ∼0.02 mag as judged from comparisons of aperture photometry between repeat observations of galaxies. The combination     which enters into the Fundamental Plane relation, has internal uncertainties of ∼0.008, corresponding to < 2 per cent in estimated distance. Taken individually, the (correlated) internal errors in R e and 〈 μ 〉e are ∼8 per cent and ∼0.12 mag respectively. Comparisons with literature data constrain the external random errors to ≲5 per cent in distance (per observation), which is small in comparison to the ∼20 per cent scatter in the FP. The data will form part of a merged catalogue of FP parameters, presented in a companion paper.  相似文献   

16.
We present a series of RXTE observations of the nearby obscured Seyfert galaxies ESO103-G35, IC5063, NGC 4507 and NGC 7172. The period of monitoring ranges from seven days for NGC 7172 up to about seven months for ESO103-G035. The spectra of all galaxies fit well with a highly obscured ( N H>1023 cm−2) power-law and an Fe line at 6.4 keV. We find strong evidence for the presence of a reflection component in ESO103-G35 and NGC 4507. The observed flux presents strong variability on day time-scales in all objects. Spectral variability is also detected in the sense that the spectrum steepens with increasing flux similar to the behaviour witnessed in some Seyfert 1 galaxies.  相似文献   

17.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

18.
Using recently published estimates — based on high spatial resolution spectroscopy — of the mass M BH of nuclear black holes for a sample of nearby galaxies, we explore the dependence of galaxy nucleus emissivity at various wavelengths on M BH. We confirm an almost linear scaling of the black hole mass with the baryonic mass of the host spheroidal galaxy. A remarkably tight relationship is also found with both nuclear and total radio centimetric flux, with a very steep dependence of the radio flux on M BH ( P  ∝  M 2.5BH). The high-frequency radio power is thus a very good tracer of a supermassive black hole, and a good estimator of its mass. This, together with the lack of significant correlations with the low-energy X-ray and far-IR flux, supports the view that advection-dominated accretion is ruling the energy output in the low accretion rate regime. Using the tight dependence of total radio power on M BH and the rich statistics of radio emission of galaxies, we derive an estimate of the mass function of remnants in the nearby Universe. This is compared with current models of quasar and active galactic nucleus (AGN) activity and of the origin of the hard X-ray background (HXRB). As for the former, continuous long-lived AGN activity is excluded by the present data with high significance, whereas the assumption of a short-lived, possibly recurrent, activity pattern gives remarkable agreement. The presently estimated black hole mass function also implies that the HXRB has been produced by a numerous population (∼ 10−2 Mpc−3) of moderately massive ( M BH ∼ 107 M⊙) black holes.  相似文献   

19.
We investigate the correlation between the supermassive black holes (SMBHs) mass ( M bh) and the stellar velocity dispersion  (σ*)  in two types of host galaxies: the early-type bulges (disc galaxies with classical bulges or elliptical galaxies) and pseudo-bulges. In the form  log ( M bh/M) =α+β log (σ*/200 km s−1)  , the best-fitting results for the 39 early-type bulges are the slope  β= 4.06 ± 0.28  and the normalization  α= 8.28 ± 0.05  ; the best-fitting results for the nine pseudo-bulges are  β= 4.5 ± 1.3  and  α= 7.50 ± 0.18  . Both relations have intrinsic scatter in  log  M bh  of ≲0.27 dex. The   M bh–σ*  relation for pseudo-bulges is different from the relation in the early-type bulges over the 3σ significance level. The contrasting relations indicate the formation and growth histories of SMBHs depend on their host type. The discrepancy between the slope of the   M bh–σ*  relations using different definition of velocity dispersion vanishes in our sample, a uniform slope will constrain the coevolution theories of the SMBHs and their host galaxies more effectively. We also find the slope for the 'core' elliptical galaxies at the high-mass range of the relation appears steeper  (β≃ 5–6)  , which may be the imprint of their origin of dissipationless mergers.  相似文献   

20.
The first spectroscopic census of active galactic nuclei (AGNs) associated with late-type galaxies in the Virgo cluster was carried out by observing 213 out of a complete set of 237 galaxies more massive than   M dyn > 108.5 M  . Among them, 77 are classified as AGNs [including 21 transition objects, 47 low-ionization nuclear emission regions (LINERs) and nine Seyferts] and comprise 32 per cent of the late-type galaxies in Virgo. Due to spectroscopic incompleteness, at most 21 AGNs are missed in the survey, so that the fraction would increase up to 41 per cent. Using corollary near-infrared observations that enable us to estimate galaxy dynamical masses, it is found that AGNs are hosted exclusively in massive galaxies, i.e.   M dyn≳ 1010 M  . Their frequency increases steeply with the dynamical mass from zero at   M dyn≈ 109.5 M  to virtually 1 at   M dyn > 1011.5 M  . These frequencies are consistent with those of low-luminosity AGNs found in the general field by the Sloan Digital Sky Survey. Massive galaxies that harbour AGNs commonly show conspicuous r -band star-like nuclear enhancements. Conversely, they often, but not necessarily, contain massive bulges. A few well-known AGNs (e.g. M61, M100, NGC 4535) are found in massive Sc galaxies with little or no bulge. The AGN fraction seems to be only marginally sensitive to galaxy environment. We infer the black hole masses using the known scaling relations of quiescent black holes. No black holes lighter than  ∼106 M  are found active in our sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号