首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed test of a simple nonlinear quasi-geostrophic model of stratospheric sudden warming has been performed. The model is of Matsuno's type, which includes only the interaction between a single planetary wave and the zonal mean flow. Given this limitation, the 1979 major stratospheric sudden warming has been employed to test the ability of the model to simulate an actual warming event. This event proved to be an especially appropriate testing ground for the model, since its main assumptions were reasonably well satisfied by the observational evidence. Results from the model simulations demonstrate (a) that such simple quasi-geostrophic dynamics are completely capable of providing a rather detailed simulation of the 1979 major warming event and (b) that the ability of the model to simulate successfully the observed evolution of the warming is extremely sensitive to the magnitude and form of the dissipation mechanism that is assumed to operate in the middle atmosphere.  相似文献   

2.
The results of numerical experiments on the modeling of thermospheric and ionospheric disturbances under conditions of sudden stratospheric warming are presented to study the possible mechanisms of such disturbances. Local disturbances caused by a planetary wave with zonal wave number s = 1 and internal gravity waves (IGWs) propagating from the disturbed region in the stratosphere are taken into account as sources of disturbances. It is shown that the inclusion of an additional source of thermospheric disturbances caused by mesospheric variations of atmospheric parameters with IGW periods over the region of sudden stratospheric warming leads to significant changes in the parameters of the thermosphere and ionosphere, including a change in the global structure of the distributions of the gas components of the thermosphere and a shift in maximum concentrations of atomic oxygen to low latitudes of the Southern Hemisphere; there is an increase in the mean values, the diurnal and semidiurnal variations of the ion concentration in the F region of the ionosphere. These features of changes in the parameters of the thermosphere and ionosphere occurred with insignificant disturbances of tidal variations in the thermosphere.  相似文献   

3.
Stratospheric warmings are attributed to an enhanced planetary wave activity, occurring nearly each winter – at least in the northern hemisphere – with different strengths. The generation of stratospheric warmings is not totally understood. One of the most promising explanations is the interaction of planetary waves: in many cases, the amplitude of the quasi-stationary planetary wave 1 builds up, until it transmits its momentum and energy to the background wind field. The role of wave 2 is usually considered to be less important.Based on ERA-40 and DYANA temperature data (January–February 1990), we found evidence that a resonant wave–wave interaction between a travelling and a stationary wave 2 was responsible for a minor stratospheric warming in February 1990. The interaction being observed during four weeks can eventually be used as an indication for an upcoming stratospheric warming.  相似文献   

4.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

5.
Analyses of evolutions of the kinetic and thermal energy associated with the major and minor stratospheric warmings in the winters of 1976–77 and 1975–76 respectively indicate that the predominant ultra-long waves in the stratosphere oscillated at periods of 10–20 days, whereas in the troposphere the predominant long waves oscillated at periods of 8 to 12 days. These tropospheric long waves are almost out-of-phase with the stratospheric ultra-long waves for the minor warming, but in-phase for the major warming. The kinetic energy of the zonal mean flow in the stratosphere for the minor warming is much greater than that for the major warming, indicating that the occurrence of a major warming depends on the magnitude of the kinetic energy of the zonal mean flow relative to that of the meridional convergence of the poleward flux of sensible heat. In both the major and minor warmings, most of the stratospheric eddy kinetic energy is contained in waves of wavenumbers 1 and 2, whereas the stratospheric available potential energy is primarily contained in waves of wavenumber 1. The kinetic energy associated with waves of wavenumber 1 appeared to be 180° out-of-phase with those of wavenumber 2, indicating that nonlinear transfer of kinetic energy occurred between waves of wavenumbers 1 and 2. The occurrences of wind reversals were accompanied by decouplings of the stratospheric and tropospheric motions, and blockings in the troposphere.  相似文献   

6.
The transport mechanisms responsible for the seasonal behavior of total ozone are deduced from the comparison of model results to stratospheric data. The seasonal transport is dominated by a combination of the diabatic circulation and transient planetary wave activity acting on a diffusively and photochemically determined background state. The seasonal variation is not correctly modeled as a diffusive process. The buildup of total ozone at high latitudes during winter is dependent upon transient planetary wave activity of sufficient strength to cause the breakdown of the polar vortex. While midwinter warmings are responsible for enhanced ozone transport to high latitudes, the final warming marking the transition from zonal mean westerlies to zonal mean easterlies is the most important event leading to the spring maximum. The final warming is not followed by reacceleration of the mean flow; so that the ozone transport associated with this event is more pronounced than that associated with midwinter warmings.  相似文献   

7.
Observational studies on the semiannual oscillation in the tropical stratosphere and mesosphere are reviewed. Results of many statistics based on rocket and satellite observations reveal that the long-term behavior of the mean zonal wind exhibits two semiannual cycles which have their maximum amplitudes centered at the stratopause level and the mesopause level, each one being associated with the semiannual temperature variations predominating at levels about 10 km lower.Observational evidence obtained from recent studies of the dynamical properties of upper stratospheric waves strongly supports the theoretical consideration that the stratospheric semiannual oscillation is the manifestation of the wave-zonal flow interaction with alternating accelerations of the westerly flow by Kelvin waves and the easterly flow by planetary Rossby waves.Regarding the semiannual variation in the upper mesosphere, however, very little is known about the possible momentum source. Therefore, emphasis is placed on the need for further observations of the structure and behavior of the tropical middle atmosphere.  相似文献   

8.
Stratospheric warming effects on the tropical mesospheric temperature field   总被引:1,自引:0,他引:1  
Temperature observations at 20–90 km height and 5–15°N during the winter of 1992–1993, 1993–1994 and 2003–2004, from the Wind Imaging Interferometer (WINDII) and Microwave Limb Sounder (MLS) experiments on the Upper Atmosphere Research Satellite (UARS) satellite and the Sounding the Atmosphere using Broadband Emission Radiometry (SABER) experiment on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite are analyzed together with MF radar winds and UK Meteorological Office (UKMO) assimilated fields. Mesospheric cooling is observed at the time of stratospheric warming at the tropics correlative with stratospheric warming events at middle and high latitudes. Planetary waves m=1 with periods of 4–5, 6–8, 10 and 12–18 days are found to dominate the period. Westward 7- and 16-day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   

9.
The stratosphere–mesosphere response to the major sudden stratospheric warming (SSW) in the winter of 2003/2004 has been studied. The UKMO (UK Meteorological Office) data set was used to examine the features of the large-scale thermodynamic anomalies present in the stratosphere of the Northern Hemisphere. The vertical and latitudinal structure of the genuine anomalies, emphasized by removing the UKMO climatology, has been investigated as well. The features of the stratospheric anomalies have been related to the mesospheric ones in measured neutral winds from radars and temperatures from meteor radars (90 km). It was found that the stratospheric warming spread to the lower mesosphere, while cooling occurred in the upper mesosphere, a feature that may be related to the large vertical scales of the stationary planetary waves (SPWs). It was shown also that the beginning of the eastward wind deceleration in the stratosphere–mesosphere system coincided with the maximum amplification of the SPW1 accompanied by short-lived bursts of waves 2 and 3.  相似文献   

10.
对流层强迫与平流层暴发性增温   总被引:3,自引:0,他引:3       下载免费PDF全文
采用平流层准地转-β通道近似下的波流相互作用模型,考虑大气行星波1和波2与流的相互作用,以平流层底部边界强迫波波1和波2的振幅作为参数,对该模型的分岔特性进行了研究.结果表明,系统具有稳态解支A,B,C,在某些参数范围内,多种稳态解同时存在.解支A对应于平流层冷冬状态,解支C对应于平流层增温状态.由于参数变化系统在稳态解A和C之间发生灾变是冬季平流层暴发性增温的原因.文中给出了二维参数空间中的分岔集,它表明了对流层顶的波动对平流层暴发性增温的控制作用,能很好地解释观测事实.  相似文献   

11.
Zonal mean data and amplitudes and phases of planetary zonal waves were derived from daily hemispheric maps for tropospheric and stratospheric levels, for the four winters 1975–76 to 1978–79. Important year-to-year fluctuation in zonal means and wave activity are described, most notable of which are the changes from 1975–76 to 1976–77. Comparison of the relative strengths of the stratospheric and tropospheric jet streams shows a strong negative correlation (–0.8) between monthly mean zonal stratospheric winds (at 10 mb, 65°N) and zonal tropospheric winds (at 200 mb, 32.5°N, in the jet core) and a positive correlation (+0.7) between the stratospheric 10 mb winds and the tropospheric 200 mb winds at 65°N. Parameters correlated were the departures from the climatological mean zonal winds. The structure of correlation between wave amplitudes in the same wave number (1, 2) at different altitudes and between wave numbers 1 and 2 is investigated. We find a high correlation (+0.93) between wave 1 in the stratosphere (10 mb height) and wave 2 (height) in the troposphere at 65°N; but only a weak correlation (+0.2) between wave 1 amplitudes in the stratosphere and troposphere. These results suggest the possible importance of wave-wave interactions in processes linking the stratosphere and troposphere. The wave correlations presented here are based on comparisons of monthly means of daily amplitudes; the correlation structure in individual wave developments may differ, in view of the likelihood of altitudinal lags in wave amplification.  相似文献   

12.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

13.
The long-term variability of stationary and traveling planetary waves in the lower stratosphere has been investigated using the data of NCEP/NCAR reanalysis. The results obtained show that during the last decades winter-mean amplitude of the stationary planetary wave with zonal wave number 1 (SPW1) increases at the higher middle latitudes of the Northern Hemisphere. It has been suggested that the observed increase in the SPW1 amplitude should be accompanied by the growth in the magnitude of the stratospheric vacillations. The analysis of the SPW1 behavior in the NCEP/NCAR data set supports this suggestion and shows a noticeable increase with time in the SPW1 intra-seasonal variability. The amplitudes of the long-period normal atmospheric modes, the so-called 5-, 10- and 16-day waves, diminish. It is supposed that one of the possible reasons for this decrease can be a growth of radiative damping rate caused, for instance, by the increase of CO2. To investigate a possible climatic change of the middle atmosphere dynamics caused by observed changes in the tropospheric temperature, two sets of runs (using zonally averaged temperature distributions in the troposphere typical for January 1960 and 2000) with the middle and upper atmosphere model (MUAM) have been performed. The results obtained show that on average the calculated amplitude of the SPW1 in the stratosphere increased in 2000 and there is also an increase of its intra-seasonal variability conditioned by nonlinear interaction with the mean flow. This increase in the amplitudes of stratospheric vacillations during the last four decades allows us to suggest that stratospheric dynamics becomes more stochastic.  相似文献   

14.
Planetary wave activity at quasi 16-, 10- and 5-day periods has been compared at various altitudes through the middle and upper atmosphere over Halley (76°S, 27°W), Antarctica, during the austral winters of 1997–1999. Observational data from the mesosphere, E-region ionosphere and F-region ionosphere have been combined with stratospheric data from the ECMWF assimilative operational analysis. Fourier and wavelet techniques have shown that the relationship between planetary wave activity at different altitudes is complex and during the winter eastward wind regime does not conform to a simple combination of vertical planetary wave propagation and critical filtering. Strong planetary wave activity in the stratosphere can coincide with a complete lack of wave activity at higher altitudes; conversely, there are also times when planetary wave activity in the mesosphere, E-region or F-region has no apparent link to activity in the stratosphere. The latitudinal activity pattern of stratospheric data tentatively suggests that when the stratospheric signatures are intense over a wide range of latitudes, propagation of planetary waves into the mesosphere is less likely than when the stratospheric activity is more latitudinally restricted. It is possible that, on at least one occasion, 16-day planetary wave activity in the mesosphere may have been ducted to high latitudes from the lower latitude stratosphere. The most consistent feature is that planetary wave activity in the mesosphere is almost always anti-correlated to planetary wave activity in the E-region even though the two are in close physical proximity. The oscillatory critical filtering of vertical gravity wave propagation by planetary waves and the re-generation of the planetary wave component at higher altitudes through subsequent critical filtering or breaking of the gravity waves may provide an explanation for some of these characteristics. Alternatively the nonlinear interaction between planetary waves and tides, indicated in the E-region data, may play a role.  相似文献   

15.
Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.  相似文献   

16.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

17.
18.
Summary In this article, we present a scale analysis of planetary waves, extended long waves, and long waves. (We mean the extended long waves to be the disturbances whose east-west length is of order 106 m and north-south extension 107 m). We find for the extended long waves the two terms, the interaction between kinetic and available potential energy of the disturbances, and the interaction between the zonal mean available potential energy, and the eddy available potential energy, are of two orders of magnitude larger than the kinetic energy interaction between the disturbances and the associated zonal mean flow. This theoretical result concerning the relative importance of the various interaction terms may be of use in explaining the observational findings thus far available.It is also shown theoretically that the kinetic energy interaction between the planetary waves, the horizontal size of which is 107 m, and the long waves, whose horizontal size is 106 m, is of the same order as the interaction of kinetic energy between the zonal mean motion and the disturbances. This agrees fairly well with the observational estimates thus far obtained.  相似文献   

19.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

20.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号