首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A time-series approach to the estimation of recharge rate in unconfined aquifers of highly variable water level is proposed. The approach, which is based on the water-table fluctuation method (WTF), utilizes discrete water-level measurements. Other similar techniques require continuous measurements, which makes them impossible to apply in cases where no data from automatic loggers are available. The procedure is deployed at the Ressacada Farm site, southern Brazil, on a coastal shallow aquifer located in a humid subtropical climate where diurnal water-level variations of up to 1 m can follow a precipitation event. The effect of tidal fluctuations on the groundwater levels is analyzed using a harmonic component builder, while a time-variable drainage term is evaluated through an independent analysis and included in the assessment. The estimated recharge values are compared with those obtained from the continuous measurements showing a good agreement with the approaches for discrete dataset intervals of up to 15 days. Subsequently, the estimated recharge rates are incorporated into a transient groundwater-flow model and the water levels are compared showing a good match. Henceforth, the approach extends the applicability of WTF to noncontinuous water-level datasets in groundwater recharge studies.  相似文献   

2.
韩再生 《地质通报》2003,22(2):142-143
1会议简况第四届国际地下水人工补给会议于2002年9月22-26日在澳大利亚阿德莱德市举行。这是继1988年在美国加州Anaheim、1994年在美国佛罗里达州Orlando和1998年在荷兰Amsterdam召开的前3届会议之后,由国际水文地质学会(IAH)、联合国教科文组织(UNESCO)等组织主办的国际学术研讨会。来自26个国家的197位正式代表出席了会议。其中,中国地质调查局1人、中国科学院3人。会议论文集收录了100篇论文,反映了当代世界各国有关地下水人工补给研究的最新成果,由A.A.BALKEMA出版社在会前出版,…  相似文献   

3.
The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.  相似文献   

4.
The cumulative storage accumulation curve (CSAC) is a tool for saturated-volume fluctuation (SVF) analysis of transient recharge to shallow phreatic aquifers discharging only to springs. The method assumes that little underflow or phreatic evapotranspiration occurs. The CSAC is a modified water-table hydrograph that distinguishes storage increase caused by recharge from loss due to springflow-induced recession. Required for the analysis are water-table fluctuations at a single representative location within the catchment of a single spring and either direct measurements or robust interpolations of springflows at different aquifer stages. The method employs empirical manipulation of head observations, varying spring catchment area to minimize CSAC water-level changes in late portions of long recessions. Results include volumetric estimates of recharge integrated over individual events and instantaneous rates of recharge to the water table, at the temporal resolution of the water-level sampling interval. The analysis may also yield physically realistic information on spring catchment and recharge focusing. In a test case in West Virginia, USA, recharge estimates by this technique were consistent with integrated springflow time series but greater than estimates based on potential evapotranspiration. Results give insight into dynamic recharge behavior over time as well as an indication of recharge catchment size. Electronic Publication  相似文献   

5.
人工补给提供了可持续储存水和改善水质的方法,是地下水资源保护的重要内容.第四届国际地下水人工补给会议交流了人工补给的新技术,讨论了其社会、经济、环境的作用.  相似文献   

6.
This paper refers to the development of a conceptual model for the management of a coastal aquifer in northern Greece. The research presents the interpretation and analysis of the quantitative (groundwater level recordings and design of piezometric maps) regime and the formation of the upcone within the area of investigation. Additionally it provides the elaboration of the results of chemical analyses of groundwater samples (physicochemical parameters, major chemical constituents and heavy metals and trace elements) of the area which were taken in three successive irrigation periods (July–August 2003, July–August 2004 and July 2005), in order to identify areas of aquifer vulnerability. The study identifies the areas where ion exchange phenomena occur, as well as the parts of the aquifer where the qualitative degradation of the aquifer system is enhanced. The paper, finally, assesses the lack of any scientific groundwater resources management of the area by the local water authorities, as well as the current practices of the existing pumping conditions scheme as applied by groundwater users.An erratum to this article can be found at  相似文献   

7.
Validity of a sharp-interface model in a confined coastal aquifer   总被引:1,自引:1,他引:0  
 The problem of seawater intrusion is considered for the case of a confined coastal aquifer in which there is steady seaward flow of fresh water. Using the GWCH2O model, the problem is solved first for the case of no dispersion where a distinct interface exists separating the fresh water from the salt water. The problem is solved next by taking into account dispersion and diffusion of the salt-water component, along with the density effect. In this respect, a two-dimensional finite-element model, 2D-VDTRAN, is developed to simulate density-dependent solute transport. To investigate the limitation of the sharp-interface approach in coastal aquifers for conditions of both steady state and unsteady state, the problem is solved twice using the two models with different parameter values. These parameters are combined in dimensionless form, resulting in four named parameters: seepage factor (A); dispersion-to-advection ratio (B); geometry ratio (C); and time-scale factor (T). Using the density-dependent model, the dimensionless width of the transition zone (W/L) is determined for different values of A, B, C, and T. Steady-state simulations show that the sharp-interface approach is valid only when the system is dominated by advection, i.e., when 0<B≤5% for all values of A and C, or when A≥65% for all values of B and C. However, the unsteady-state analysis shows that the applicability of the sharp-interface approach is sufficiently accurate at early times. Received, October 1997 Revised, June 1998, October 1998 Accepted, November 1998  相似文献   

8.
Using MODFLOW 2005, this study numerically evaluated the effects of managed aquifer recharge (MAR) using treated wastewater (TWW) in managing the Al-Khawd coastal aquifer northeast of Oman. Our primary objective is to increase the urban water supply and to sustain the aquifer service with the lowest possible damage to the aquifer. A number of managerial scenarios were simulated and progressively developed to reduce seawater intrusion and outflow of the groundwater to the sea. An economic analysis was conducted to characterize the trade-off between the benefits of MAR and seawater inflow to the aquifer under increased abstraction for domestic supply. The results show that by managing irrigation wells and relocating public wells in conjunction with MAR practices, the abstracted volume for drinking purposes could be doubled. Even though injection of TWW is more expensive (due to the injection cost), it was observed to result in greater benefits. The results indicate that managing the aquifer would produce a net benefit ranging from $8.22 million (scenario 7) to $15.21 million (scenario 4) compared to $1.57 million with the current practice. In conclusion, MAR using TWW is a feasible solution to develop water resources in arid regions, and the best scenario depends on the decision maker’s preference when weighing the benefits of MAR and the level of damage to the aquifer. MAR could help manage stressed aquifer systems in arid zones to maximize the benefit of using the water for domestic purposes while minimizing the damage to the aquifer.  相似文献   

9.
The studied area is in the Algerian Northeast. A number of interacting factors at the site are able to modify salinity. The main influences are: (1) The lithology, (2) Fedzara Lake, (3) marine waters, and (4) a prolonged drought. (1) The lithology is very clearly delineated by the outcrop of metamorphic formations (gneiss, marbles, micaschists, and quartzites) and sedimentary formations (limestones, clay, sandstones, and sands). All these formations can influence the chemical composition of waters. (2) Fedzara Lake evacuates its salted waters via the Wadi Meboudja, which connects with the Wadi Seybouse and the phreatic surface. These lake waters might induce changes in salinity. (3) The marine waters represent the third source of salinity change. Over-pumping of water from wells and drillings can cause an imbalance to the fresh–salted water interface. (4) The effects of a local prolonged drought of more than 10 years may increase water salinity. Over-pumping to augment water supply generates a fall in water levels and the drier atmosphere increases evapotranspiration. Both may contribute to increased salinity. Results of water analysis were used to observe the evolution of these various factors.  相似文献   

10.
The temperature depth profiles of six wells in the Motril-Salobren~a aquifer were used as a basis for a comparative analysis involving various parameters to determine their relations and factors influencing the different trends. There is a clear influence of ambient temperature on all the profiles, with a lag time of two to five months. Nevertheless, there are clear differences in the temperature depth profile patterns that can be accounted for by other factors. First, there is a greater influence of localized recharge; Guadalfeo River as opposed to diffuse recharge; irrigation return flow and rainfall. Three of the wells located near the riverbed of the Guadalfeo River have extremely variable temperature-depth profiles and show clear river influence. In springtime, during the highest flood stages of the river due to cold melt water from the Sierra Nevada, the groundwater falls in temperature. During secondary peaks in river flow rates during the autumn due to rainfall, the warm water increases groundwater temperature. The effect of the river recharge decreases with distance from the course since there is less mixing with water from the Guadalfeo River. In addition, there are two temperature-depth profiles in which temperature variations remain shallow and follow a pattern that cannot be attributed to the influence of either of the above two parameters. Among these two cases, the most influential factor is the groundwater flow pattern typical of a discharge zone, characterized by vertical-flow components.  相似文献   

11.
Groundwater sustainability assessment in coastal aquifers   总被引:1,自引:0,他引:1  
The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m 2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS >1 kg/m 3). The study also arrives at the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.  相似文献   

12.
Seawater intrusion has been an important topic in hydrogeology in China in recent decades. The rapid growth of the population and economy in the coastal regions has been consuming a tremendous amount of groundwater resources and has increased the extent of seawater intrusion. The spatial discrepancy of water resource distribution has caused the studies of seawater intrusion into China to mainly be concentrated on the area around the Bohai Sea in the northern part of China. The total area of seawater-intruded land due to excessive groundwater utilization in the area was estimated to be approximately 2,457 km2 in 2003. Great efforts have been made to mitigate the extent of seawater intrusion and to secure more freshwater resources, including building monitoring networks, subsurface barrier and groundwater reservoirs, and artificial infiltration facilities. Management projects over the years were evaluated to satisfy the objectives and to provide valuable experiences for future research and planning. It is expected that the coastal groundwater conditions of the northern region will improve through the development of a national water resource plan, such as the ongoing south-to-north water diversion project.  相似文献   

13.
Fort Morgan Peninsula is an attached portion of a dynamic barrier complex in the northern Gulf of Mexico and is a large tourist area that brings in a significant amount of revenue for Alabama. Many of the hotels and tourist attractions depend on the groundwater as their water supply. The over-withdrawal of groundwater and saltwater intrustion will have a negative impact on the ecology, tourism and economy if groundwater resources are not properly monitored and managed. In this study a calibrated groundwater flow model was used to analyze the sustainability of groundwater resources at Fort Morgan Peninsula. Detailed flow budgets were prepared to check the various components of inflow and outflow under different water use and climatic conditions. The results indicated the locations where groundwater was over-pumped and subjected to saltwater intrusion, or will be subjected to saltwater intrusion under a range of projected water use and climatic conditions.  相似文献   

14.
Multivariate statistical techniques including cluster analysis and principal components analysis were applied on 22 variables consisted of 3 physicochemical parameters, 8 major ions and 11 trace elements. Samples were collected from the south Rhodope multilayered coastal aquifer in north Greece which is facing saltwater intrusion and anthropogenic contamination over the last 35 years. Cluster analysis grouped the variables into five main groups while principal components analysis revealed four distinct hydrochemical processes in the aquifer system, explaining 84.5 % of the total variance between the variables. The identified processes correspond to, saltwater intrusion and subsequent reverse cation exchange, the presence of deep connate groundwater masses, application of fertilizers in shallow wells and anthropogenic contamination with heavy metals nearby an improperly constructed landfill. The wells categorized with the above techniques were grouped and five constituent ratios Na/Cl, (Mg + Ca)/Cl, Ca/(HCO3 + SO4), Ca/SO4 and Ca/Mg were utilized to identify the ones which enable the more accurate distinction between the group cases. The results of stepwise discriminant analysis showed that the calculated classification function can distinguish almost 80 % of groundwater samples with the Na/Cl ratio being the most statistically significant grouping variable. All the aforementioned statistical models managed to successfully identify numerous hydrochemical processes in a complex multilayered aquifer system and to explicitly attribute them for every investigated well, allowing a deeper insight into groundwater chemical characteristics with the use of an optimized smaller number of variables.  相似文献   

15.
在沿海地区,尤其是围海造陆工程形成的陆域地区地下水水位受潮汐影响较大,使传统水文地质试验求取含水层参数存在较大误差。因此通过合理概化地下水在潮汐作用下运动规律,建立数学模型,推导解析公式求取沿海含水层参数具有重要意义。分析天津滨海新区两处观测孔地下水位及潮汐波动特征,在滞后时间不明显的情况下,利用观测孔水位变幅数据计算了含水层水头扩散系数,并根据承压含水层储水系数经验值进一步获得含水层渗透系数。通过两个观测孔分别计算,对比计算结果互相验证发现,该方法取得了令人满意的结果。利用地下水潮汐效应计算含水层参数可以广泛应用于沿海地区水文地质工作中。  相似文献   

16.
《Applied Geochemistry》2000,15(6):791-805
This paper describes the geochemical evolution of groundwater in the Bathonian and Bajocian aquifer along its flowpath. Since this aquifer represents one of the main sources of fresh water supply in the Caen area and has been subjected to a Holocene marine intrusion, its management requires a sound knowledge of (1) the primary conditions and (2) the potential influence of either natural or anthropogenic pressures. Groundwater vertical sampling validity is discussed with the contribution of high resolution temperature logging. The main processes of geochemical evolution along a groundwater flow line and the sea-water intrusion characteristics are discussed using ionic concentrations (Br, F and major elements) and isotopes (water δ2H and δ18O, TDIC δ13C and A14C, sulphate δ18O and δ34S). As the 13C content of TDIC is used as a tracer of water-rock interaction, it shows evidence of specific chemical and isotopic evolutions of groundwater within the aquifer, both related to water-rock interaction and mineral equilibria in groundwater. All the above-mentioned tracers evolve downflow: cation concentrations are modified by exchange with clay minerals allowing a high F concentration in groundwater, whereas Br and SO2−4 concentrations appear to be redox condition dependant. Superimposed on these geochemical patterns, δ18O and δ2H compositions indicate that aquifer recharge has varied significantly through time. The chemical evolution of groundwater is locally affected by a salty water intrusion that is characterised by mixing between Flandrian fresh water and sea-water which has interacted with peat as evidenced by a high Br/Cl ratio and SO2−4 reduction.  相似文献   

17.
Saltwater intrusion in coastal aquifers depends on the distribution of hydraulic properties, on the climate, and on human interference such as land reclamation. In order to analyze the key processes that control saltwater intrusion, a hypothetical steady-state salt distribution in a representative cross-section perpendicular to the coastline was calculated using a two-dimensional density-dependent solute transport model. The effects of changes in groundwater recharge, lowering of drainage levels, and a rising sea level on the shape and position of the freshwater/saltwater interface were modeled in separate simulations. The results show that the exchange of groundwater and surface water in the marsh areas is one of the key processes influencing saltwater intrusion. A rising sea level causes rapid progression of saltwater intrusion, whereas the drainage network compensates changes in groundwater recharge. The time scale of changes resulting from altered boundary conditions is on the order of decades and centuries, suggesting that the present-day salt distribution does not reflect a steady-state of equilibrium.  相似文献   

18.
Hydrogeology Journal - A participatory modelling approach is presented for effective groundwater management at the Mediterranean coastal plain of Marathon, Greece. The main objective was to...  相似文献   

19.
The integration of the statistical approaches and GIS tools with the hydrogeological and geological contexts allowed the assessment of the processes that cause groundwater quality deterioration in the great important deltaic aquifer in the northeastern Tunisia (Medjerda Lower Valley Aquifer). The spatial variation of the groundwater parameters and the molar ratio (Cl?/Br?) were also used to determine the possible impacts from seawater intrusion and from the septic tank leachate. Sixty shallow groundwater samples were collected in 2014 and analyzed for major and trace ions over an area of about 1090 km2 to determine the suitability for drinking or agricultural purposes. The total dissolved solids (TDS) content ranges from 1005 to 19,254 mgl?1 with a mean value of 3477.18 mgl?1. The chemistry is dominated by the sodium–chloride waters (55%). Mapping of TDS, Cl?, Na+, SO42? and NO3? using kriging method shows a clear increase in salinity toward the coastline accompanied by Na+ and Cl? increase which may be related to seawater intrusion and halite dissolution. Locally, higher nitrate concentration is related to the agricultural activities inducing contribution of chemical fertilizers and irrigation with treated wastewater. The saturation indices indicate that all carbonate minerals tend to reach saturation equilibrium confirming water–rock interactions, while evaporitic minerals are still in sub-saturation state and may increase the salinity of the groundwater. The principal component analysis proves the occurrence of groundwater contamination principally by seawater intrusion in the factor I (74.15%) and secondary by an anthropogenic source in the factor II (10.35%).  相似文献   

20.
An insect, Folsomia candida, was found in a shallow aquifer along the southwestern coast of Michigan. F. candida is a standard organism for soil toxicity testing but its occurrence in groundwater is uncommon to rare, or has been under-reported in the literature. Attempts to correlate the presence of F. candida to water and soil parameters yielded: (1) F. candida is present in the upper 15–25 cm of topsoil, but absent in the underlying vadose zone except directly above the water table, regardless of the presence in groundwater; (2) F. candida is most abundant in groundwater 4.3–5.0 m below land surface; (3) Most F. candida occur in wells with dissolved oxygen ranging from 4 to 5 ppm; (4) F. candida is most abundant in water between about 14 and 18°C; (5) F. candida is abundant in groundwater with high concentrations of Cl, Na+, and K+; and, (6) Small differences in pore space volume determine the feasibility of F. candida occupancy, but not the presence of F. candida in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号