首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Snow cover strongly influences plant growth in Arctic and alpine ecosystems. Snow characteristics and snowmelt timing are likely to change in a warmer climate. We studied year rings and shoot growth of the dwarf shrub bilberry ( Vaccinium myrtillus ), and species abundances of the vegetation, in response to early or late snowmelt at a study site in the Central Alps, near Davos, Switzerland. Snowmelt was manipulated on experimental plots for 3 and 30 years. Additional plots were set up along a natural snowmelt gradient, and at high and low elevation. Growth ring data showed an increasing trend in annual growth increment over the last 20 years, especially in the extraordinarily hot summer of 2003. Comparing high and low elevation sites, growth rings were wider at low elevation, but only in cold years. In years with relatively cold summers, however, xylem ring width was greater in plots with late rather than early snowmelt along the natural snowmelt gradient, possibly indicating drought stress in early snowmelt plots. Snow cover had a strong influence on species abundances along the natural snowmelt gradient, and change (not yet significant) was beginning to be seen in plots with 30 years of snow manipulation. Our results indicate that beneficial effects of early snowmelt for shrub growth may be offset in cold summers. Although early snowmelt prolongs the growing season, harsh conditions and frost events early in the growing season may become more likely, and hamper plant growth, and this could affect plant growth in all Arctic and alpine snow-dominated ecosystems.  相似文献   

2.
中国气候变化的植物信号和生态证据   总被引:4,自引:2,他引:4  
袁婧薇  倪健 《干旱区地理》2007,30(4):65-473
全球平均气温上升、降水格局变化、极端天气事件发生的频率和强度增大等气候变化现象已经对陆地生态系统产生了影响,物种、群落和生态系统响应于气候变化而发生的改变,可以作为气候变化的间接生物学和生态学证据,对未来气候变化的影响评价有重要的价值,尤其是对减缓和适应全球气候变化的"地球系统科学"研究以及可持续生态系统管理与发展对策的制订,具有重要的意义。在国际气候变化的生物学证据研究的大背景下,总结了中国陆地生态系统响应过去气候变化的植物学信号和生态学证据:(1)物种水平:气候变暖导致中国33°N以北大部分地区植物春季物候期包括萌芽、展叶、开花期等显著提前,植被生长季延长;(2)群落水平:群落物种组成和分布发生改变,主要表现在长白山等高山群落交错带物种组成和林线位置的变化以及青藏高原高寒草甸的退化;(3)生态系统水平:全国总体植被盖度增加,植被活动加强,生产力增加;北方和西部地区农业植被的耕作制度、种植结构、耕种面积和产量发生变化,东北地区水稻种植面积和产量增加,但全国大部分地区农作物产量和温度呈负相关,这将威胁到未来的粮食安全。  相似文献   

3.
北半球积雪/海冰面积与温度相关性的差异分析   总被引:1,自引:1,他引:0  
任艳群  刘苏峡 《地理研究》2018,37(5):870-882
积雪和海冰的时空变化对区域以及全球的气候、水文具有重要影响。基于雪冰数据和NCEP再分析气温数据,利用MK检验、滞后分析等方法,分析了积雪、海冰的时空变化特征及其与温度的相关特征。结果表明:1979-2013年,北半球积雪区、北极圈的年均温度呈显著上升的趋势,而积雪面积和海冰面积呈显著下降的趋势。在大部分地区,积雪覆盖频率随着温度的上升呈显著减少的趋势,但在中国长江中下游、青藏高原等局部地区,积雪覆盖频率随着温度的上升呈显著增加趋势。在大部分的近陆地海域,海冰覆盖频率随着温度的上升呈显著下降趋势。超前时间1~2个月的温度与海冰面积的负相关性最高。超前1~4个月的温度与积雪面积的负相关性最高。温度对海冰的影响时间比对积雪的影响时间长1~2个月。温度变化对海冰和积雪的影响存在一致性,但积雪和海冰对温度的响应时间存在差异,具有空间变异性。  相似文献   

4.
Studying the winter survival of forage grasses under a changing climate requires models that can simulate the dynamics of soil conditions at low temperatures. We developed a simple model that simulates depth of snow cover, the lower frost boundary of the soil and the freezing of surface puddles. We calibrated the model against independent data from four locations in Norway, capturing climatic variation from south to north (Arctic) and from coastal to inland areas. We parameterized the model by means of Bayesian calibration, and identified the least important model parameters using the sensitivity analysis method of Morris. Verification of the model suggests that the results are reasonable. Because of the simple model structure, some overestimation occurs in snow and frost depth. Both the calibration and the sensitivity analysis suggested that the snow cover module could be simplified with respect to snowmelt and liquid water content. The soil frost module should be kept unchanged, whereas the surface ice module should be changed when more detailed topographical data become available, such as better estimates of the fraction of the land area where puddles may form.  相似文献   

5.
The study of mountain vertical natural belts is an important component in the study of regional differentiation.These areas are especially sensitive to climate change and have indicative function,which is the core of three-dimensional zonality research.Thus,based on high precision land cover and digital elevation model (DEM) data,and supported by MATLAB and ArcGIS analyses,this paper aimed to study the present situation and changes of the land cover vertical belts between 1990 and 2015 on the northern and southern slopes of the Koshi River Basin (KRB).Results showed that the vertical belts on both slopes were markedly dif-ferent from one another.The vertical belts on the southern slope were mainly dominated by cropland,forest,bare land,and glacier and snow cover.In contrast,grassland,bare land,sparse vegetation,glacier and snow cover dominated the northern slope.Study found that the main vertical belts across the KRB within this region have not changed substantially over the past 25 years.In contrast,on the southern slope,the upper limits of cropland and bare land have moved to higher elevation,while the lower limits of forest and glacier and snow cover have moved to higher elevation.The upper limit of alpine grassland on the northern slope retreated and moved to higher elevation,while the lower limits of glacier and snow cover and vegetation moved northward to higher elevations.Changes in the vertical belt were influenced by climate change and human activities over time.Cropland was mainly controlled by human activities and climate warming,and the reduced precipitation also led to the abandonment of cropland,at least to a certain extent.Changes in grassland and forest ecosystems were predominantly influenced by both human activities and climate change.At the same time,glacier and snow cover far away from human activities was also mainly influenced by climate warming.  相似文献   

6.
The interaction between the cryosphere and atmosphere is an essential and extremely sensitive mutual action process on the earth. Due to global warming and the cryospheric melting, more and more attention has been paid to the interaction process between the cryosphere and atmosphere, especially the feedback of the cryosphere change to the atmosphere. A comprehensive review of the studies on the interaction between the cryosphere and atmosphere is conducted from two aspects: (1) effects of climate change on the cryosphere or responses of the cryosphere to climate change; and (2) feedback of the cryosphere change to the climate. The response of the cryosphere to climate change is lagging. Such a lagging and cumulative effect of temperature rise within the cryosphere have resulted in a rapid change in the cryosphere in the 21st century, and its impacts have become more significant. The feedback from cryosphere change on the climate are omnifarious. Among them, the effects of sea ice loss and snow cover change, especially the Arctic sea ice loss and the Northern Hemisphere snow cover change, are the most prominent. The Arctic amplification (AA) associated with sea ice feedback is disturbing , and the feedback generated by the effect of temperature rise on snow properties in the Northern Hemisphere is also of great concern. There are growing evidence of the impact of the Arctic cryosphere melting on mid-latitude weather and climate. Weakened storm troughs, steered jet stream and amplified planetary waves associated with energy propagation become the key to explaining the links between Arctic cryosphere change and atmospheric circulation. There is still a great deal of uncertainty about how cryosphere change affects the weather and climate through different atmospheric circulation processes at different spatial and temporal scales due to observation and simulation problems.  相似文献   

7.
近一千年来贺兰山积雪和气候变化   总被引:3,自引:2,他引:1  
通过对历史文献中关于贺兰山积雪变化记录的研究,以及其他反映贺兰山气候变化的环境信息的分析,确认贺兰山地区西夏、元明时期为冷凉气候,积雪特征反映的气候变化与中国西部气候变化相一致。通过贺兰山与天山、太白山、点苍山积雪变化的比较,发现其时间变化过程和演化规律具有一致性,进而对12世纪寒冷期永久积雪下限进行推测。根据对一千年来贺兰山年日最低气温≤0℃日数的计算,认为12世纪寒冷期年平均气温较现代约低1.52℃,推算当时贺兰山永久积雪下限为海拔34003500m;以17世纪中叶为代表的小冰期年平均气温较现代约低11.5℃,推算当时贺兰山永久积雪下限为海拔35003600m。  相似文献   

8.

It has repeatedly been reported that snow cover is a dominating factor in determining the presence or absence of permafrost in the discontinuous and sporadic permafrost regions. The temperature at the snow-soil interface by the end of winter, known as the bottom temperature of winter snow (BTS) method, has been used to detect the existence of permafrost in European alpine regions when the maximum snow depth is about 1.0 m or greater. A critical snow thickness of about 50 cm or greater can prevent the development of permafrost in eastern Hudson Bay, Canada. The objective of this study is to investigate the impact of snow cover on the presence or absence of permafrost in cold regions through numerical simulations. A one-dimensional heat transfer model with phase change and a snow cover regime is used to simulate energy exchange between deep soils and the atmosphere. The model has been validated against the in situ data in the Arctic. The simulation results indicate that both snow depth and the onset date of snow cover establishment are important parameters in relation to the presence or absence of permafrost. Early establishment of snow cover can make permafrost disappear, even with a relatively thin snow cover. Permafrost may survive when snow cover starts after the middle of December even with a snow thickness >1.0 m. This effect of snow cover on the ground thermal regime can be explained with reference to the pattern of seasonal temperature variation. Early establishment of snow cover enhances the insulating impact over the entire cold season, thus warming and eventually thawing the permafrost. The insulating effect is substantially reduced when snow cover starts relatively late and snowmelt in the spring creates a huge heat sink, resulting in a favorable combination for permafrost existence.  相似文献   

9.
积雪是冰冻圈中较为活跃的因子,对气候环境变化敏感,其变化影响着全球气候和水文的变化。积雪覆盖日数(SCD)、降雪开始时间(SCOD)和融雪开始时间(SCMD)是影响地表物质和能量平衡的主要因素。使用MODIS无云积雪产品提取了叶尔羌河流域2002年7月-2018年6月逐日积雪覆盖率(SCP),基于像元计算了SCD、SCOD和SCMD,系统地分析了其空间分布与变化特征,并探讨了其变化的原因及积雪面积的异常变化与ENSO的联系。结果表明:(1)研究时段内,流域的积雪覆盖面积呈微弱减少趋势,与气温呈显著负相关,与降水呈显著正相关;2002-2018年,SCP随海拔的升高呈明显的线性增加趋势(R2=0.92、P<0.01));各海拔高度带最大SCP出现的月份大致随海拔的上升往后推迟,最小SCP出现月份无显著变化(集中在8月),海拔4000 m以下,春季的SCP小于冬季,海拔4000 m以上,春季的SCP大于冬季。(2)SCD、SCOD和SCMD有明显的海拔梯度,在流域内,从东北至西南,呈现出SCD增加,SCOD提前,SCMD推迟的特征;变化趋势上,流域91.9%的区域SCD表现为减少,65.6%的区域SCOD有往后推迟的趋势,77.4%的区域SCMD表现出提前的趋势。(3)2006、2008年和2017年积雪覆盖面积异常偏大,而在2010年则异常偏小,其原因可能是ENSO影响了积雪的变化。(4)以喀喇昆仑为主的高海拔地区,包括帕米尔高原东部的部分地区,其SCD、SCOD和SCMD分别表现出增加、提前和推迟的趋势,这种变化与其春秋温度的持续走低以及降水量的增加有关。  相似文献   

10.
1982~2013年青藏高原高寒草地覆盖变化及与气候之间的关系   总被引:7,自引:2,他引:5  
陆晴  吴绍洪  赵东升 《地理科学》2017,37(2):292-300
利用GIMMS NDVI数据和地面气象站台观测数据,对青藏高原1982~2013年高寒草地覆盖时空变化及其对气象因素的响应进行研究,结果表明:青藏高原高寒草地生长季NDVI表现为从东南到西北逐渐减少的趋势,近32 a来,整个高原草地生长季NDVI呈上升趋势,增加速率为0.000 3/a (p<0.05);高寒草地生长季NDVI年际变化具有空间异质性,整体为增加趋势,呈增加趋势的面积约占研究区域面积的75.3%,其中显著增加的占26.0% (p<0.05),类型主要为分布在青藏高原东北部地区的高寒草甸;比例为4.7%,草地类型主要为高寒草原,主要分布在高原西部地区;基于生态地理分区的分析显示,青藏高原草地与降水、温度的相关关系具有明显的空间差异,高寒草地生长季NDVI均值与降水呈显著正相关,对降水的滞后效应显著;高原东北部温度较高,热量条件较好,降水为高寒草地生长季NDVI变化的主导因子;东中部地区降水充沛,温度则为高寒草地生长的制约因子;南部地区降水和温度都较适宜,均与高寒草地生长季NDVI相关性显著(p< 0.05),共同作用于草地的生长;中部和西部地区,气候因子与高寒草地生长季NDVI关系均不显著。  相似文献   

11.
基于2001—2018年MOD10A2积雪产品和MOD11A2陆地表面温度数据,采用精细分区统计和相关性分析方法,研究了中国天山不同海拔高度上积雪垂直分布特征及其与地表温度(Land surface temperature,LST)的响应关系。结果表明:中国天山积雪覆盖率(Snow cover percentage,SCP)随海拔的变化呈现春、夏、秋、冬4种不同的季节变化模式。SCP在海拔4200 m以下呈秋冬季增加、春夏季减少态势,在海拔4200 m以上呈秋冬季减少、春夏季增加态势。除冬季外,春、夏、秋3个季节的SCP与LST均具有显著强负相关性。  相似文献   

12.
A major proportion of discharge in the Aksu River is contributed from snow-and glacier-melt water.It is therefore essential to understand the cryospheric dynamics in this area for water resource management.The MODIS MOD10A2 remotesensing database from March 2000 to December 2012 was selected to analyze snow cover changes.Snow cover varied significantly on a temporal and spatial scale for the basin.The difference of the maximum and minimum Snow Cover Fraction(SCF)in winter exceeded 70%.On average for annual cycle,the characteristic of SCF is that it reached the highest value of 53.2%in January and lowest value of 14.7%in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000 m below and 3,000 m above.The fluctuation of annual average snow cover is strong which shows that the spring snow cover was on the trend of increasing because of decreasing temperatures for the period of 2000-2012.However,temperature in April increased significantly which lead to more snowmelt and a decrease of snow cover.Thus,more attention is needed for flooding in this region due to strong melting of snow.  相似文献   

13.
20世纪以来,随着全球气候变暖加剧,冰川和积雪普遍退缩,严重影响到人类的生存和社会经济的可持续发展,这一问题在我国西北干旱区的博格达峰地区及其周边地区尤为突出。以博格达峰地区为例,利用1990—2016年Landsat 5与Landsat 8遥感影像,对比分析归一化积雪指数(NDSI)、归一化冰雪指数(NDSII)、归一化主成分雪指数(NDPCSI)和缨帽转换湿度指数(WET)在博格达峰地区监测冰川和积雪的能力,同时结合研究区周边气温、降水数据和研究区地形数据,探讨博格达峰地区冰川和积雪面积变化与区域地形、气候间的响应关系。结果表明:(1) WET相对于NDSIINDSINDPCSI精度值更高,可以替代NDSINDSII监测博格达峰地区冰川和积雪面积。(2) 博格达峰地区冰川和积雪面积呈持续退缩的趋势。1990—2016年,冰川和积雪面积减少率约20.07%,且年退缩率不断增加。(3) 高程、坡度和坡向对冰川和积雪面积变化的影响较显著,山地阴影对其影响较弱,气温的升高是冰雪面积减少的主要因素。  相似文献   

14.
The Arctic has a disproportionately large response to changes in radiative forcing of climate, and arctic lacustrine ecosystems respond sensitively to these changes. The goal of this research is to generate high-resolution climate records for the past two millennia using multiple proxies in order to place 20th and 21st century climate and environmental change into a long-term context. We use a 14C- and 210Pb-dated surface core from Lake CF8 on northeastern Baffin Island, Arctic Canada to generate a high-resolution multiproxy reconstruction of climate and environmental change. Throughout the late Holocene, primary productivity in Lake CF8 was low, but increased almost 20-fold in the past 200 years. Insect (Chironomidae) assemblages also show dramatic changes since 1950 AD, with cold stenothermous chironomid taxa disappearing from the record altogether. These changes in productivity and chironomid assemblages are unprecedented in the past 5,000 years. The dramatic ecological shifts that occurred at Lake CF8 have also been observed elsewhere in the Arctic, and will likely continue at ever-increasing rates as anthropogenic inputs of green house gases continue to cause climate warming and enhanced lacustrine primary production.  相似文献   

15.
This paper compares the responses of two contrasting Arctic ecosystems to climate change simulations: a polar semi-desert (in Svalbard) and a dwarf shrub heath (at Abisko, northern Sweden). These ecosystems are located close to the northern-and southernmost extremes of the Arctic region, respectively. Inmacts of simulated climatic changes were determined through factorial perturbation experiments, where growing season temperature, nutrient availability and water supply were manipulated. The results are compared with the impact of interannual variation in climate on the growth of a keystone moss species, Hylocomium splendens , from the wider circumpolar area. The perturbation studies revealed that current interannual variability in temperature and the temperate tolerance of many species may exceed predicted changes in mean summer temperature over the next century. Arctic ecosystems differed in their responses to environmental manipulations, with the structure of the dwarf shrub health being affected through shifts in competitive hierarchy, potentially leading to lower biodiversity, and the polar semi-desert being affected through invasion, potentially leading to higher diversity. H. splendens showed negative responses to perturbation at the sub-Arctic site, in contrast to the positive relationship between temperature and growth observed in the natural environment. This apparent discrepancy may result from: (i) artefacts arising from the perturbations, such as lower atmospheric relative humidity; (ii) non-equilibrium responses during the relatively short-term perturbation studies and/or (iii) ecotypic variation in the moss population. Thus, caution should be employed when extrapolating from perturbations studies to both longer time-scales and different ecosystems within the Arctic.  相似文献   

16.
 HJ-1A、1B卫星具有较高的时间和空间分辨率,适合小流域尺度的积雪动态监测研究。本文基于HJ-1B数据,选取军塘湖流域,针对同时具有HJ-1B/CCD、IRS数据和只有HJ-1B/CCD数据两种情况展开雪盖提取方法研究。对于第一种情况,因研究区南端有大面积森林覆盖,会影响雪像元识别,选用[WTBX]NDSI[WTBZ]和[WTBX][STBX]S3[WTBZ][STBZ]两种雪盖指数,并利用[WTBX]NDVI[WTBZ]或TM影像反演的林区辅助判识积雪。结果表明:当有植被信息辅助分类时,两种雪盖指数均能较好提取出森林覆盖区的积雪,且提取结果基本一致,精度较高。对于第二种情况,因无法计算雪盖指数,采用光谱与纹理信息结合的SVM法提取雪盖,提取的面积和精度与上述方法相比略低,但很接近,说明在缺少[WTBX]IRS[WTBZ]数据的情况下,仅利用CCD仍可提取出较为准确的雪盖,满足实际应用需求。  相似文献   

17.
东北地区融雪期径流及产沙特征分析   总被引:10,自引:1,他引:9  
焦剑  谢云  林燕  赵登峰 《地理研究》2009,28(2):333-344
严重的水土流失已威胁到东北地区的土地资源,融雪径流及其造成的侵蚀作为该地区水土流失的重要组成部分,但相关研究较少。本文利用全区93个气象站降水资料,分析了东北地区降雪与积雪的基本特征。利用27个典型流域水文站径流泥沙资料,分析了融雪期内径流与产沙特征。结果表明:东北各地雪期长度为5~8个月,自南向北逐渐延长。年降雪量占年降水总量的比例多在7~25%,由此形成的融雪期径流深占全年径流深比例达13.3~24.9%,融雪期输沙模数占全年输沙模数比例达5.8~27.7%。融雪期流域输沙模数受地貌影响十分显著:丘陵漫岗区降雪量和径流深均低于山区,但输沙模数平均为山区的2.9倍。融雪输沙模数与流域面积有十分显著的幂函数递减关系。为揭示融雪侵蚀影响因素及其作用机理,今后应加强融雪期内流域侵蚀及产沙监测。  相似文献   

18.
The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979–2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the northernmost regions.  相似文献   

19.
季节性雪被覆盖对植物群落的影响   总被引:11,自引:0,他引:11  
吴彦 《山地学报》2005,23(5):550-556
对雪被覆盖下光照、温度、水分状况、雪化学与养分特点,不同雪被厚度梯度下植物群落的物种组成和分布特点,雪生植物的生长发育和物候特征等方面的研究工作进行了综述,从植物生态学的角度,阐述了雪被生态学研究的发展方向。  相似文献   

20.
以海拔依赖型变暖为理论基础,研究山地积雪对气候变暖的响应机制,是当前气候变化研究的热点问题。基于2000—2019年MODIS积雪物候数据,对秦岭南北积雪日数时空变化进行分析,探讨了秋冬两季厄尔尼诺指数(NINO)、青藏高原气压对积雪异常的影响。结果表明:(1) 2013年后秦岭南北气候由“变暖停滞”转为“增温回升”,积雪日数随之呈现转折下降,积雪日数≥10 d栅格占比由前期的35.1%下降为8.6%。(2)在垂直地带规律上,秦岭山地以1950~2000 m为临界点,大巴山区以1600~1650 m为临界点,低海拔地区积雪日数随海拔增加速率要低于高海拔地区。2100~3150 m海拔带是积雪日数的垂直变化的关键带;(3)在影响因素上,NINO C区、NINO Z区秋冬海温和青藏高原冬季高压,是秦岭山地、汉江谷地和大巴山区积雪异常的有效指示信号。当赤道太平洋中部秋冬海温偏低,且青藏高原冬季高压偏低时,上述3个子区积雪日数异常偏多。(4)在环流机制方面,相对于积雪日数偏少年,秦岭南北积雪日数偏多年1—2月0℃等温线位置偏南,低温环境为增加冰雪物质积累、延缓冰雪消融提供了气温条件;1月区域存...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号