共查询到20条相似文献,搜索用时 15 毫秒
1.
The study focuses on investigating significant wave height, including both mean and extreme values, in the North Atlantic in winter during the period from 1979 to 2010. We perform a 32-year wind wave hindcast for the North Atlantic using a spectral ocean wave model (WaveWatch III) and a high-resolution nonhydrostatic atmospheric model (WRF-ARW), which provides the wind forcing function. Analysis of the 32-year hindcast of wave characteristics in the North Atlantic reveals stronger mean and extreme waves simulated with high resolution modeling systems and identifies significant downward trends in the mean significant wave height in the subpolar North Atlantic. Such trends were not found in the wave characteristics from ERA-Interim reanalysis. At the same time, the 32-year hindcast did not confirm the statistically significance of strong positive trends in the central Atlantic diagnosed by ERA-Interim reanalysis; differences between the reanalysis and hindcast are discussed. 相似文献
2.
Tsung-Hung Peng Rik Wanninkhof 《Deep Sea Research Part I: Oceanographic Research Papers》2010,57(6):755-770
Data from the first systematic survey of inorganic carbon parameters on a global scale, the GEOSECS program, are compared with those collected during WOCE/JGOFS to study the changes in carbon and other geochemical properties, and anthropogenic CO2 increase in the Atlantic Ocean from the 1970s to the early 1990s. This first data-based estimate of CO2 increase over this period was accomplished by adjusting the GEOSECS data set to be consistent with recent high-quality carbon data. Multiple Linear Regression (MLR) and extended Multiple Linear Regression (eMLR) analyses to these carbon data are applied by regressing DIC with potential temperature, salinity, AOU, silica, and PO4 in three latitudinal regions for the western and eastern basins in the Atlantic Ocean. The results from MLR (and eMLR provided in parentheses) indicate that the mean anthropogenic CO2 uptake rate in the western basin is 0.70 (0.53) mol m?2 yr?1 for the region north of 15°N; 0.53 (0.36) mol m?2 yr?1 for the equatorial region between 15°N and 15°S; and 0.83 (0.35) mol m?2 yr?1 in the South Atlantic south of 15°S. For the eastern basin an estimate of 0.57 (0.45) mol m?2 yr?1 is obtained for the equatorial region, and 0.28 (0.34) mol m?2 yr?1 for the South Atlantic south of 15°S. The results of using eMLR are systematically lower than those from MLR method in the western basin. The anthropogenic CO2 increase is also estimated in the upper thermocline from salinity normalized DIC after correction for AOU along the isopycnal surfaces. For these depths the results are consistent with the CO2 uptake rates derived from both MLR and eMLR methods. 相似文献
3.
4.
Tsung-Hung Peng Rik Wanninkhof Richard A. Feely 《Deep Sea Research Part II: Topical Studies in Oceanography》2003,50(22-26):3065
The multiple-parameter linear regression method (Monitoring global ocean carbon inventories. Ocean Observing System Development Panel, Texas A&M University, College Station, TX, 1995, 54pp; Global Biogeochem. Cycles 13 (1999) 179) is used to compare inorganic carbon data from the GEOSECS CO2 survey in the Pacific Ocean in 1973 to the WOCE/JGOFS global CO2 survey in the 1990s. A model of total dissolved inorganic carbon (DIC) as a function of five variables (AOU, θ, S, Si, and PO4) has been developed from the recent CO2 survey data (namely CGC91 and CGC96) in the Pacific Ocean. After correcting for a systematic DIC offset of −30.3±7 μmol kg−1 from the GEOSECS data, the residual DIC based on this model as computed from GEOSECS data has been used to estimate the anthropogenic CO2 penetration in the Pacific Ocean. In the Northeast Pacific, we obtained an increase of CO2 of 21.3±7.9 mol m−2 over the period from GEOSECS in 1973 to CGC91 in 1991. This gives a mean anthropogenic CO2 uptake rate of 1.3±0.5 mol m−2 yr−1 over this 17 year time period. In the South Pacific, north of 50°S between 180° and 120°W region, the integrated anthropogenic CO2 inventory is estimated to be 19.7±5.7 mol m−2 over the period from GEOSECS in 1974 to CGC96 in 1996. The equivalent mean CO2 uptake rate is estimated to be 0.9±0.3 mol m−2 yr−1 over the 22 years. These results are compared with the isopycnal method (Nature 396 (1998) 560) to estimate the anthropogenic CO2 signal in the Northeast Pacific (30°N, 152°W) at the crossover region between CGC91 and GEOSECS. The results of the isopycnal method are consistent with those derived from the MLR method. Both methods show an increase in anthropogenic CO2 inventory in the ocean over two decades that is consistent with the increase expected if the ocean uptake has kept pace with the atmospheric CO2 increase. 相似文献
5.
The impact of river load variability on the North Aegean ecosystem functioning over the last decades (1980–2000) was investigated by means of a coupled hydrodynamic/biogeochemical model simulation. Model results were validated against available SeaWiFS Chl-a and in situ data. The simulated food web was found dominated by small cells, in agreement with observations, with most of the carbon channelled through the microbial loop. Diatoms and dinoflagellates presented a higher relative abundance in the more productive coastal areas. The increased phosphate river loads in the early 80s resulted in nitrogen and silicate deficiency in coastal, river-influenced regions. Primary production presented a decreasing trend for most areas. During periods of increased phosphate/nitrate inputs, silicate deficiency resulted in a relative decrease of diatoms, triggering an increase of dinoflagellates. Such an increase was simulated in the late 90s in the Thermaikos Gulf, in agreement with the observed increased occurrence of Harmful Algal Blooms. Microzooplankton was found to closely follow the relative increase of dinoflagellates under higher nutrient availability, showing a faster response than mesozooplankton. Sensitivity simulations with varying nutrient river inputs revealed a linear response of net primary production and plankton biomass. A stronger effect of river inputs was simulated in the enclosed Thermaikos Gulf, in terms of productivity and plankton composition, showing a significant increase of dinoflagellates relative abundance under increased nutrient loads. 相似文献
6.
Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean 总被引:3,自引:0,他引:3
Graldine Sarthou Alex R. Baker Jurjen Kramer Patrick Laan Agathe Laës Simon Ussher Eric P. Achterberg Hein J.W. de Baar Klaas R. Timmermans Stphane Blain 《Marine Chemistry》2007,104(3-4):186-202
Aerosol (soluble and total) iron and water-column dissolved (DFe, < 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6–14 months). Enhanced near surface water concentrations of DFe (5.90–6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07–0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000–1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters. 相似文献
7.
Christophe Leboulanger Louise Oriol Henri Jupin Chantal Desolas-gros 《Deep Sea Research Part I: Oceanographic Research Papers》1997,44(12):2131-2139
The concentration of dissolved glycolate in sea water was measured by high performance liquid chromatography in the eastern tropical Atlantic Ocean during the Eumeli 4 oceanographic cruise in June 1992. Diurnal concentrations of glycolate reached 74 kg 1−1 1−1 in mesotrophic waters and 17 μg 1−1 1 in oligotrophic waters. At midday total dissolved glycolate exceeded 1 g of carbon per m2 of ocean, decreasing strongly during the night (less than 0.1 g of carbon per m2). At the three stations studied, glycolate carbon difference between night and day in the water column was of the same order as the daily primary production estimated by incorporation of 14C02. Disappearance of this compound at night suggested a rapid consumption by heterotrophic organisms. These data suggest that glycolate excretion by phytoplankton may be important, and possibly influenced by ambient nutrient concentrations. Further, with glycolate representing up to 50% of daily productivity, our estimates of the total biological reduction of C02 need to be re-examined. 相似文献
8.
Global sea surface wind field data derived from NCEP reanalysis were used in driving a SWAN wave model to reconstruct historical wave records from 1948 to 2008. The reconstructed wave data were compared and verified by the observation of the data buoys of the Central Weather Bureau and the Water Resources Agency, Taiwan, and the National Data Buoy Center/National Oceanic and Atmospheric Administration, United States. Over the past six decades, the wave climate in Taiwan waters has undergone considerable changes. The annual mean significant wave heights have reduced an average of 0.31 cm/year. Winter wave heights have gradually dropped 0.86 cm/year, which are related to the weakening of winter monsoons. Regarding the inter-annual wave climate variation, the influence of El Niño/southern oscillation was substantial; the wave heights increased in La Niña years and decreased in El Niño years. In the past 60 years, extreme wave events have been concentrated in two periods: 1967–1974 and 2000–2008. More severe extreme wave events occurred in the latter compared with the former, and all were induced by typhoons. A clear trend, in which the summer (winter) extreme wave events have increased (decreased) gradually, has been identified. The 1980s was the transition period. After the transition period, the annual occurrence of extreme wave events caused by typhoons exceeded those caused by an intense outbreak of winter cold surges, although the total number of the annual extreme wave events has not changed substantially. 相似文献
9.
C. Rabouille H. Stahl F. Bassinot A. Tengberg J. Brunnegard P. Hall K. Kiriakoulakis J. -L. Reyss L. Dezileau P. Crassous P. Roos R. S. Lampitt 《Progress in Oceanography》2001,50(1-4)
Fluxes contributing to the particulate carbonate system in deep-sea sediments were investigated at the BENGAL site in the Porcupine Abyssal Plain (Northeast Atlantic). Deposition fluxes were estimated using sediment traps at a nominal depth of 3000 m and amounted to 0.37±0.1 mmol C m−2 d−1. Dissolution of carbonate was determined using flux of total alkalinity from in situ benthic chambers, is 0.4±0.1 mmol C m−2 d−1. Burial of carbonate was calculated from data on the carbonate content of the sediment and sedimentation rates from a model age based on 14C dating on foraminifera (0.66±0.1 mmol C m−2 d−1). Burial plus dissolution was three times larger than particle deposition flux which indicates that steady-state is not achieved in these sediments. Mass balances for other components (BSi, 210Pb), and calculations of the focusing factor using 230Th, show that lateral inputs play only a minor role in this imbalance. Decadal variations of annual particle fluxes are also within the uncertainty of our average. Long-term change in dissolution may contribute to the imbalance, but can not be the main reason because burial alone is greater than the input flux. The observed imbalance is thus the consequence of a large change of carbonate input flux which has occured in the recent past. A box model is used to check the response time of the solid carbonate system in these sediments and the time to reach a new steady-state is in the order of 3 kyr. Thus it is likely that the system has been perturbed recently and that large dissolution and burial rates reflect the previously larger particulate carbonate deposition rates. We estimate that particulate carbonate fluxes have certainly decreased by a factor of at least 3 and that this change has occurred during the last few centuries. 相似文献
10.
Organic matter in eolian dusts over the Atlantic Ocean 总被引:1,自引:0,他引:1
Bernd R.T Simoneit 《Marine Chemistry》1977,5(4-6)
The elemental and mineralogical composition and the microfossil and detritus content of particulate fallout from the lower troposphere over the Atlantic Ocean have been extensively documented in earlier work, and it was possible to ascribe terrigenous source areas to such fallout. A brief review of the organic geochemistry of eolian dust is also presented here. The lipids of eolian dusts sampled from the air mass over the eastern Atlantic from about 35°N to 30°S were analyzed here.These lipids consisted mainly of normal alkanes, carboxylic acids and alcohols. The n-alkanes were found to range from n-C23 to n-C35, with high CPI values and maximizing at n-C27 in the North Atlantic, at n-C29 in the equatorial Atlantic and at n-C31 in the South Atlantic. The n-fatty acids had mostly bimodal distributions, ranging from n-C12 to n-C30 (high CPI), with maxima at n-C16 and in the northern samples at n-C24 and in the southern samples at n-C26. The n-alcohols ranged from n-C12 to n-C32, with high CPI values and maxima mainly at n-C28. The compositions of these lipids indicated that their terrigenous sources were comprised mainly of higher plant vegetation and desiccated lacustrine mud flats on the African continent. 相似文献
11.
《Deep Sea Research Part II: Topical Studies in Oceanography》2010,57(15):1396-1405
Temporal variability in deep-sea polychaete assemblages was assessed at the Porcupine Abyssal Plain Sustained Observatory, NE Atlantic, over a 9-year period (eight cruises between August 1989 and September 1998). The polychaete communities were characterized by large number of individuals (abundance) and high family richness. The highest abundances occurred in the upper 1 cm sediment layer (53.2% of total abundance). The most abundant families were the Cirratulidae, Spionidae, Opheliidae and Paraonidae. Surface deposit feeders were the dominant trophic group (67.4% of total abundance). Significant temporal variability was evident in polychaete abundance with significant differences in polychaete abundance between sampling periods (cruises; p<0.01). Stepwise increases in abundance in September 1996 and March 1997 coincided with similar increases in abundance in large invertebrates (megafauna) in the same area (known as the ‘Amperima Event’ after a species of holothurian that increased in abundance by over three orders of magnitude). Similar patterns were observed for abundances across different layers of the sediment, main families and trophic groups showing significant differences between cruises (p<0.05). A comparison of samples taken (1) before the ‘Amperima Event’ (1989–1994) and (2) during the ‘Amperima Event’ (1996–1998) showed significant differences in the polychaete abundance in the upper 3 cm of the sediment. There were significant differences in some trophic groups (predators, deposit feeders and burrowers) and the dominant families (Cirratulidae, Spionidae and Opheliidae). Not all elements of the polychaete community showed a response (e.g. the Paraonidae). Changes in surface deposit feeders were particularly evident. The temporal variability is likely to be related to seasonal and interannual variability in organic matter input. Greater food supply in some years may allow the growth and development of deposit-feeding polychaetes. 相似文献
12.
Patrick F. Cummins Gary S.E. Lagerloef 《Deep Sea Research Part I: Oceanographic Research Papers》2004,51(12):365
Interannual variability of the sea surface height (SSH) over the northeast Pacific Ocean is hindcast with a reduced-gravity, quasi-geostrophic model that includes linear damping. The model is forced with monthly Ekman pumping fields derived from the NCEP reanalysis wind stresses. The numerical solution is compared with SSH observations derived from satellite altimeter data and gridded at a lateral resolution of 1 degree. Provided that the reduced gravity parameter is chosen appropriately, the results demonstrate that the model has significant hindcast skill over interior regions of the basin, away from continental boundaries. A damping time scale of 2 to 3 years is close to optimal, although the hindcast skill is not strongly dependent on this parameter.A simplification of the quasi-geostrophic model is considered in which Rossby waves are eliminated, yielding a Markov model driven by local Ekman pumping. The results approximately reproduce the hindcast skill of the more complete quasi-geostrophic model and indicate that the interannual SSH variability is dominated by the local response to wind forcing. There is a close correspondence the two leading empirical orthogonal modes of the local model and those of the observed SSH anomalies. The latter account for over half of the variance of the interannual signal over the region. 相似文献
13.
正On April 27,2016,a striking true-color satellite image acquired by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard National Aeronautics and Space Administration’s(NASA’s)Aqua satellite showed several groups of very well structured arc cloud patterns(Fig.1),which are associaed with atmospheric gravity waves,aligned in the middle of the Atlantic Ocean between 相似文献
14.
15.
《Deep Sea Research Part I: Oceanographic Research Papers》2000,47(5):825-857
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity. 相似文献
16.
Ocean temperature changes around New Zealand are estimated from satellite sea surface temperature (SST) products since 1981, two high resolution expendable bathythermograph transects (HRXBT) since 1986 and 1991, and Argo data since 2006. The datasets agree well where they overlap. Significant surface warming is found in subtropical waters. Greatest warming is east of Australia and in the central Pacific. All NZ coastal waters are warming, with strongest warming east of Wairarapa and weakest between East Cape and North Cape. Temperature changes are surface intensified, extending to ~200 m in the northeast and at least 850 m in the eastern Tasman. Significant interannual variability is coherent over a large area of ocean north of the Subtropical Front and modulates extreme events. NZ air temperatures are highly correlated at interannual timescales with SSTs over a broad region of ocean north of the Subtropical Front from the eastern Tasman to east of the dateline. 相似文献
17.
This paper reports on the interannual fluctuations of the seasonal sea surface temperature (SST) variability in the North Atlantic. The areas of intense variation of the average annual SST and predominant harmonic (annual and biannual) amplitude have been identified. A significant negative correlation between the average annual SST and the amplitude of the SST variation annual harmonic is demonstrated in thesee areas; amplitude anomalies of the dominating harmonics of interannual SST fluctuations may exceed the climatic norm by 1.5–2.0 times.Translated by Mikhail M. Trufanov. 相似文献
18.
The paper discusses the data derived from a numerical experiment on the ocean’s response (between the equator and 64°N) to
the seasonal variability of the atmospheric forcing (wind and heat flux through the ocean surface). A multilayer (7 layers)
non-linear model is used incorporating the upper mixed layer interacting with the internal layers in the regimes of entraining
and subduction. The restructuring of the layer composition, the currents and temperature variability, as well as the alternation
of the entrainment and subduction regimes are analysed.
Translated by Vladimir A. Puchkin. 相似文献
19.
Yu. V. Artamonov 《Physical Oceanography》2006,16(3):177-187
The monthly average values of the anomalies of the ocean level (according to the satellite data for 1992–2002) and the annual
average dynamic heights (hydrological data) are used to compute the seasonal cycle of geostrophic currents on the surface
of the Atlantic Ocean. It is shown that the west and east currents are intensified with a phase difference of several months.
At the same time, their latitudinal displacements are quasisynchronous. A delay of the seasonal signal in the east-west direction
of about 2–3 months (on the average) is typical of currents in the tropical zone of the Northern Hemisphere. On the contrary,
in the South Atlantic, the seasonal signal propagates in the west-east direction and its phase delay can be as large as almost
six months.
__________
Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 60–71, May–June, 2006. 相似文献
20.
Variations in paleoproductivity and the environmental implications over the past six decades in the Changjiang Estuary 总被引:4,自引:1,他引:4
JIN Haiyan CHEN Jianfang WENG Huanxin LI Hongliang ZHANG Weiyan XU Jie BAI Youcheng WANG Kui 《海洋学报(英文版)》2010,29(3):38-45
Total organic carbon and organic carbon stable isotope, biogenic silica, chlorin were measured from a high resolution sediment core to indicate the variation in paleoproductivity and the environmental implications over the past decades (1942 to 1997) in the Changjiang Estuary. Based on these biomarkers, the shift in the phytoplankton community structure in the past decades was discussed in response to the long-term variations in nutrient concentrations and nutrient ratios. The results showed that the δ 13 C values varied from –26.15‰ to –19.5‰, suggesting the combined organic carbon sources of riverine and marine organisms. Based on the biogenic proxies, paleoproductivity changes were categorized into three stages: low production before 1950; an increase in production with the dominance of diatoms during 1950 to 1980, consistent with increasing of nutrient concentrations; a decrease in production after 1980 when the diatom production decreased while the production of non-silicious phytoplankton increased due to high nutrient inputs, and high N/P and P/Si ratios in the Changjiang Estuary. The sedimentation records also indicated that the riverine organic carbon increased since 1980. 相似文献