首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The available data on the age and formation conditions of the granulite complexes in the western Dzhugdzhur-Stanovoi Fold Region (Dambuki and Larba blocks) and the adjacent territory of the Peristanovoi Belt (Kurul’ta, Zverevsky, and Sutam blocks) are systematized. At least three Early Precambrian episodes of high-grade granulite-facies metamorphism dated at 2.85–2.83, 2.65–2.60, and 1.90–1.88 Ga are established in the geological history of the western Dzhugdzhur-Stanovoi Fold Region. Five granulite-facies metamorphic events are documented in the Peristanovoi Belt. The early granulite-facies metamorphism, migmatization, and emplacement of charnockite are related to the first event (2183 ± 1 Ma) in the Kurul’ta Block. The structural transformation and metamorphism of charnockite under conditions of granulite facies correspond to the second event (2708 ± 7 Ma). The enderbite belonging to the Dzhelui Complex (2627 ± 16) and charnockite of the Altual Complex (2614 ± 7 Ma) were emplaced during the third tectonic event, which was immediately followed by the emplacement of the Kalar anorthosite-charnockite complex (2623 ± 23 Ma). The first episode of Early Proterozoic granulite-facies metamorphism of the Sutam Sequence in the tectonic block of the same name was related to the fourth event, probably caused by collision of the Olekma-Aldan continental microplate and the passive margin of the Uchur continental microplate. Finally, granulite-facies metamorphism superimposed on rocks of the Kalar Complex in the Kurul’ta Block and high-pressure metamorphism in the Zverevsky and Sutam blocks (1935 ± 35 Ma) correspond to the fifth metamorphic event. The Late Archean metamorphic events are most likely related to the amalgamation and subsequent collision of the terranes which currently make up the granulite basement of the Dzhugdzhur-Stanovoi Fold Region with the Olekma-Aldan continental microplate. In the Early Proterozoic, the Aldan Shield and the Dzhugdzhur-Stanovoi Fold Region were separated by an oceanic basin. Its closure, and the collision of the Aldan and Stanovoi continental microplates, were accompanied by granulite-facies metamorphism and led to the formation of the Peristanovoi Belt, or Peristanovoi Suture Zone. This collision suture continued functioning in the Phanerozoic (from the Early Jurassic to the Early Cretaceous) with the formation of thick shear zones and greenschist retrograde metamorphism.  相似文献   

2.
Zircon U-Pb age, trace elements, and Hf isotopes were determined for granulite and gneiss at Huaugtuling (黄土岭), which is hosted by ultrahigh-pressure metamorphic rocks in the Dabie(大别) orogen, east-central China. Cathodolumineseence (CL) images reveal core-rim structure for most zircons in the granulite. The cores show oscillatory zoning, relatively high Th/U and 176 Lu/177 Hf ratios, and high rare earth element (HREE)-enriched pattern, consistent with magmatic origin. They gave a weighted mean 207 Pb/206 Pb age of (2 766±9) Ma, dating magma emplacement of protolith. The rims are characterized by sector ur planar zoning, low Th/U and 176 Lu/177 Hf ratios, negative Euanomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphicconditions. Zircon U-Pb dating yields an age of (2 029±13) Ma, which is interpreted as a record ofmetamorphic event during the assembly of the supercontinent Columbia. The gneiss has a protolith ageof (1982±14) Ma, which is similar to the zircon U-Pb age for the granulite-facies metamorphism,suggesting complementary processes to granulite-facies metamorphism and partial melting. A fewinherited cores with igneous characteristics have 207 pb/206 Pb ages of approximately 3.53, 3.24, and 2.90Ga, respectively, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants. A fewTriassic and Cretaceous metamorphic ages were obtained, suggesting the influences by the Triassiccontinental collision and postcollisional collapse in response to the Cretaceous extension. Comparingwith abundant occurrence of Triassic metamorphic zircons in ultrahigh-pressure eclogite and granitehydrous melt is evident for zircon growth in theHuangtuling granulite and gneiss during thecontinental collision. The magmatic protolithzircons from the granulite show a large variationin 176 Hf/177 Hf ratios from 0.280 809 to 0.281 289,corresponding to era(t) values of-7.3 to 6.3 andHf model ages of 2.74 to 3.34 Ga. The 2.90 Gainherited zircons show the similar Hf isotope features. These indicate that both growth of juvenile crust and reworking of ancient crust took place at the time of zircon formation. It is inferred that the Archean basement of the Yangtze block occurs in thenorth as the Dabie orogen, with ca. 2.90-2.95 Ga and 2.75-2.80 Ga as two major episodes of crustalformation.  相似文献   

3.
A U -Pb zircon age of 2774±24 Ma for eclogite from the Bixiling rock body of Anhui Province, central China, indicates that the Dabieshan coesite-bearing eclogite was probably formed in the Late Archaean. A phengite Ar-Ar isochron age of 662±13 Ma for the eclogite confines also an upper limit age of its subsequent retrograde metamorphism in the Precambrian. The results of isotopic dating for such type of eclogite coincide with the geological features of its restricted occurrence within the Archaean metamaorphic terrain composed of the Dabie Group. It is believed that the Dabieshan coesite-bearing eclogite terrain might be a Late Archaean ultra-high-pressure metamorphic belt. The Dabie Mountains area was the eastward extension of the southern Qinling structural belt during the Triassic. Both the Dabie Group and the coesite-bearing eclogite hosted therein underwent a late-stage dynamic metamorphic event. The present authors have obtained a muscovite Ar-Ar isochron age of 192.6±2.8 Ma from plagioclase gn  相似文献   

4.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

5.
This paper provides further evidence for the ongoing discussion as to whether the Dabie UHPM belt formed in Triassic or Palaeozoic time, and whether the Sulu UHPM belt formed in Triassic or Neoproterozoic time. Combined use of laser Raman spectrometer (LR), cathodoluminescence imaging (CL), and ion probe U–Pb in‐situ dating (SHRIMP) provided accurate ages of UHPM from rocks collected from Weihai, NE Sulu UHPM belt. LR was used to identify coesite and other UHP minerals as inclusions in zircon separates from an amphibolized peridotite and an eclogite. CL was used to examine the zoning structure of these zircon, and SHRIMP dating was performed on specific spots on zircon to obtain ages of different geological events. An age of 221 ± 12 Ma was obtained for coesite‐bearing zircon from the amphibolized peridotite; an age of 228 ± 29 Ma for eclogite was obtained from the lower intercept of a concordia plot. These ages are interpreted as the time of UHPM in the Weihai region. Ultramafic rocks to the east of Weihai yield a magmatic age at 581 ± 44 Ma. The zircon in the ultramafic rocks possibly also records a thermal event at c. 400 Ma, but no independent geological evidence for this event has been found. The eclogite protolith formed in the Middle Proterozoic (1821 ± 19 Ma), which is similar to the age of country rock gneisses of 1847–1744 Ma. The new geochronological data confirm that UHPM occurred in the Triassic in the Sulu area when subduction took the ultramafic body and the eclogite protolith, together with the adjacent supracrustal rocks, to mantle depths.  相似文献   

6.
Garnet granulite and pyroxenite xenoliths from the Grib kimberlite pipe (Arkhangelsk, NW Russia) represent the lower crust beneath Russian platform in close vicinity to the cratonic region of the north-eastern Baltic (Fennoscandian) Shield. Many of the xenoliths have experienced strong interaction with the kimberlite host, but in others some primary granulite-facies minerals are preserved. Calculated bulk compositions for the granulites suggest that their protoliths were basic to intermediate igneous rocks; pyroxenites were ultrabasic to basic cumulates. A few samples are probably metasedimentary in origin. Zircons are abundant in the xenoliths; they exhibit complex zoning in cathodoluminescence with relic cores and various metamorphic rims. Cores include oscillatory zircon crystallized in magmatic protoliths, and metamorphic and magmatic sector-zoned zircons. Recrystallization of older zircons led to the formation of bright homogeneous rims. In some samples, homogeneous shells are surrounded by darker convoluted overgrowths that were formed by subsolidus growth when a change in mineral association occurred. The source of Zr was a phase consumed during a reaction, which produced garnet. Late-generation zircons in all xenoliths show concordant U–Pb ages of 1.81–1.84 Ga (1,826 ± 11 Ma), interpreted as the age of last granulite-facies metamorphism. This event completely resets most zircon cores. An earlier metamorphic event at 1.96–1.94 Ga is recorded by some rare cores, and a few magmatic oscillatory zircons have retained a Neoarchaean age of 2,719 ± 14 Ma. The assemblage of metaigneous and metasedimentary rocks was probably formed before the event at 1.96 Ga. Inherited magmatic zircons indicate the existence of continental crust by the time of intrusion of magmatic protoliths in the Late Archaean. The U–Pb zircon ages correspond to major events recorded in upper crustal rocks of the region: collisional metamorphism and magmatism 2.7 Ga ago and reworking of Archaean rocks at around 1.95–1.75 Ga. However, formation of the granulitic paragenesis in lower crustal rocks occurred significantly later than the last granulite-facies event seen in the upper crust and correlates instead with retrograde metamorphism and small-volume magmatism in the upper crust.  相似文献   

7.
 Zircons from a metasedimentary and a meta-igneous quartz-feldspar granulite from the Val Sesia and Val Mastallone area of the Ivrea Zone (Southern Alps) differ in their response to granulite facies metamorphism with respect to crystal morphology and U/Pb ages. Detrital zircons in the metasediment developed an isometric overgrowth by the addition of Zr derived mainly from co-existing minerals, most probably biotite, decomposing during anatectic melting. The overgrowth started in the pelitic layer of the metasediment in the Late Carboniferous at approximately 296 Ma, significantly earlier than in the adjacent psammitic layer where it started only at 261 ± 4 Ma (95% confidence level). These ages are ascribed to the differential initiation of anatexis in the two layers. The delay of melting in the psammitic layer was probably due to the different position and less steep slope of its solidus in P-T-space, as compared to the solidus in the pelitic layer. Accordingly, the melting in the psammitic layer at 261 Ma was initiated by a thermal pulse and/or by a decompression event. Decompression melting is supported by a characteristic shell morphology of the zircon overgrowth in the psammitic layer, which might have grown under shear movements during high-temperature extensional faulting. The typically magmatic zircon population of the meta-igneous granulite crystallized at 355 ± 6 Ma (95% confidence level). The morphology of the zircons and the chemistry of the rock suggest that the magma was calcalkaline. A minor subpopulation of crystals is morphologically similar to the zircons in the pelitic layer of the metasediment. This points to the admixture of a minor sediment component and, thus, to a largely volcaniclastic origin of the protolith. In contrast to the detrital zircons in the metasediment, the magmatic zircons show rare and little overgrowth and, instead, have been strongly resorbed by anatectic melt. In addition, they became partially recrystallized and the rejuvenated ages from the most thoroughly recrystallized domains indicate that the rock was subject to prograde metamorphism after 279 Ma. This may correspond to the regional temperature increase prior to the climax of metamorphism or to a local thermal pulse due to nearby mafic intrusions. An Upper Triassic event at 226 ± 5 Ma is reflected by distinct peripheral zones in the overgrowths of some zircons in the metapelite. These are interpreted as a second metamorphic pulse, possibly induced by the infiltration of fluids. Received: 2 June 1995 / Accepted: 15 September 1995  相似文献   

8.
大别山西部蓝闪榴辉岩U—Pb测年   总被引:4,自引:0,他引:4  
应用锆石U-Pb法研究了大别山蓝闪榴辉岩的高压低温变质时代和可能的原岩时代。高桥榴辉岩和陈家店榴辉岩给出了基本一致的下交点年龄1138Ma和1127Ma及相似的上交点年龄2872Ma和2647Ma。结合岩石学证据和大别山构造演化史分析,将下交点年龄解释为高压低温变质时代,相当于晋宁运动早期,上交点年龄解释训原岩的可能时代,为新太古代,同位素地质年代学研究表明,古大别洋最初形成于新太古代,闭合于早晋  相似文献   

9.
大别造山带南部浅变质岩的锆石U-Pb年龄   总被引:16,自引:0,他引:16  
在大别造山带南部,出露与超高压榴辉岩伴生,仅经过绿片岩相变质作用的浅变质岩。浅变质岩的锆石U- Pb 年龄表明,其原岩形成时代为晋宁早期(1100 ±140 Ma) ,与扬子地块南缘的一些岩浆岩的年龄相似。浅变质岩不一致线下交点年龄及超高压地块区域片麻岩的锆石测定结果表明,它们均受到加里东期构造热事件的影响,印支期超高压变质作用仅使浅变质岩的Rb- Sr 体系重置而没有影响到其U- Pb 体系。  相似文献   

10.
大别山北部榴辉岩及英云闪长质片麻岩的锆石U-Pb年龄分析表明:北部榴辉岩相峰期变质时代为226~230Ma左右;北部塔儿河一带英云闪长质片麻岩经历过印支期变质事件;大别山北部与南部超高压岩石中一致的(226~230Ma)高压或超高压变质年龄表明,北部镁铁-超镁铁质岩带中部分岩石也曾作为扬子俯冲陆壳的一部分,在印支期发生过高压或超高压变质作用;本区锆石发生过两期变质增生事件,一是印支期高压或超高压变质,另一期是燕山期热变质事件;榴辉岩及英云闪长质片麻岩的原岩形成时代为晚元古代;锆石U-Pb年龄可用多期变质增生模型来解释。  相似文献   

11.
Absolute ages of migmatization in the polymetamorphic, parautochthonous basement of the Sveconorwegian Province, Sweden, have been determined using U–Pb ion probe analysis of zircon domains that formed in leucosome of migmatitic orthogneisses. Migmatite zircon was formed by recrystallization whereas dissolution–reprecipitation and neocrystallization were subordinate. The recrystallized migmatite zircon was identified by comparison of zircon in mesosomes and leucosomes. It is backscatter electron‐bright, U‐rich (800–4400 ppm) with low Th/U‐ratios (generally 0.01–0.1), unzoned or ‘oscillatory ghost zoned’, and occurs as up to 100 μm‐thick rims with transitional contacts to cores of protolith zircon. Protolith ages of 1686 ± 12 and 1668 ± 11 Ma were obtained from moderately resorbed, igneous zircon crystals (generally Th/U = 0.5–1.5, U < 300 ppm) in mesosomes; protolith zircon is also present as resorbed cores in the leucosomes. Linkage of folding, synchronous migmatization and formation of recrystallized zircon rims allowed direct dating of south‐vergent folding at 976 ± 7 Ma. At a second locality, similar recrystallized zircon rims in leucosome date pre‐Sveconorwegian migmatization at 1425 ± 7 Ma; an upper age bracket of 1394 ± 12 Ma for two overprinting phases of deformation (upright folding along gently SSW‐plunging axes and stretching in ESE) was set by zircon in a folded metagranitic dyke. Lower age brackets for these events were set at 952 ± 7 and 946 ± 8 Ma by zircon in two crosscutting and undeformed granite–pegmatite dykes. Together with previously published data the present results demonstrate: (i) Tectonometamorphic reworking during the Hallandian orogenesis at 1.44–1.42 Ga, resulting in migmatization and formation of a coarse gneissic layering. (ii) Sveconorwegian continent–continent collision at 0.98–0.96 Ga, involving (a) emplacement of an eclogite unit, (b) regional high‐pressure granulite facies metamorphism, (c) southvergent folding, subhorizontal, east–west stretching and migmatization, all of which caused overprint or transposition of older Mesoproterozoic and Sveconorwegian structures. The Sveconorwegian migmatization and folding took place during or shortly after the emplacement of Sveconorwegian eclogite and is interpreted as a result of north–south shortening, synchronous with east–west extension and unroofing during late stages of the continent–continent collision.  相似文献   

12.
拉萨地块西部呈断块状沿狮泉河-申扎-嘉黎蛇绿混杂岩带附近分布的念青唐古拉岩群被认为是前寒武纪变质基底。本文对念青唐古拉岩群进行了系统的岩石学、地球化学、同位素年代学及构造地质学研究。研究结果表明片岩-片麻岩-变粒岩含十字石、石榴子石等特征变质矿物,遵循粒度分异规律,其原岩可能为来自冈瓦纳古陆核北缘中新元古代弧盆体系的活动大陆边缘浊积岩。斜长角闪岩具低硅、高铁镁、富钙的基性岩特征,其原岩为岛弧型基性火山岩。念青唐古拉岩群中的花岗伟晶岩锆石LA-ICPMS U-Pb年龄为1150±13Ma,具过铝质S型花岗岩地球化学特征,可能为中元古代(1150±13 Ma)以前就开始沉积的念青唐古拉岩群基底岩石通过部分熔融形成。与花岗伟晶岩渐变过渡接触的二云斜长片麻岩第一组变质重结晶锆石U-Pb年龄为701±15 Ma,结合十字石特征变质矿物,暗示了该地区中温高压变质作用的峰期变质,变质程度达角闪岩相;第二组热液流体锆石UPb年龄为301±8.4 Ma,可能与冈瓦纳大陆北缘古特提斯洋演化过程中的岩浆热液作用有关。  相似文献   

13.
大别山岳西县石关混合岩锆石SHRIMP定年及其地质意义   总被引:1,自引:1,他引:0  
安徽岳西县石关混合岩属于原北大别变质杂岩的一部分。锆石SHRIMPU-Pb定年结果:第一次变质时间为232Ma,相当于晚三叠世早期,第二次变质时间为207Ma,相当于晚三叠世晚期。复合锆石的核部(继承锆石)为发育韵律环带的岩浆碎屑锆石,其年龄值分别为560Ma、444Ma、394Ma、378Ma和331Ma,暗示其原岩非岩浆岩,而应为沉积岩;研究结果还表明,北大别石关混合岩经历了两次变质作用:①超高压变质作用,变质时间为232Ma(n=5加权平均年龄);②退变质作用,时间为207Ma。与苏鲁地区超高压变质和退变质时间一致。  相似文献   

14.
大别造山带北大别超高压变质带是研究秦岭-大别-苏鲁造山带古老基底演化过程的关键区域,其内广泛发育的混合岩长期被认为主要形成于中生代。本文对北大别团风一带新识别出的一套混合岩开展了锆石U-Pb定年和Hf同位素组成分析,结果显示,混合岩第一类锆石核部具有岩浆锆石特点,组成的不一致线上交点年龄为2850±86 Ma,该年龄代表了混合岩原岩年龄。第二类锆石具有变质深熔锆石特点,其加权平均207Pb/206Pb年龄为2011±12 Ma,代表了混合岩化的时间。岩浆锆石多数具有负的εHf(t)值(-8.1~2.2),对应两阶段Hf同位素模式年龄(TDM2)为3.6~3.0 Ga,表明原岩可能为大别造山带内古太古代地壳物质重熔形成,并可能在形成过程中伴有少量幔源物质加入。与之相比,变质锆石均具有正的εHf(t)值(0.3~8.2),对应TDM2为2.7~2.2 Ga,说明在混合岩化变质深熔过程中锆石Lu-Hf同位素体系完全开放,导致了锆石Hf同位素组成的升高。本文研究表明,大别造山带除了中生代混合岩化作用以外,还存在古元古代与Columbia超大陆聚合过程相关的一期混合岩化作用,为目前已知的大别造山带内最早一期混合岩化作用。此外,该套混合岩原岩为太古宙岩石,且对应模式年龄高达3.6 Ga,这扩展了目前已知的大别造山带最古老岩石信息范围,表明大别造山带内太古宙古老地壳物质可能不仅局限于黄土岭一带,还在北大别更广泛地区出露。  相似文献   

15.
Gneissic rocks that are basement to the Late Archean granites comprising much of the Wind River Range, west-central Wyoming, have been dated by the zircon U-Pb method using both conventional and ion microprobe techniques. A foliated hornblende granite gneiss member from the southern border of the Bridger batholith is 2670±13 Ma. Zircons from a granulite just north of the Bridger batholith are equant and faceted, a typical morphology for zircon grown under high grade metamorphic conditions. This granulite, which may be related to a second phase of migmatization in the area, is 2698±8 Ma. South of the Bridger batholith, zircons from a granulite (charnockite), which is related to an earlier phase of migmatization in the Range, yield a discordia with intercept ages of about 2.3 and 3.3 Ga. However, ion microprobe analyses of single zircon grains indicate that this rock contains several populations of zircon, ranging in age from 2.67 to about 3.8 Ga. Based on zircon morphology and regional geologic relationships, we interpret the data as indicating an age of ≃3.2 Ga for the first granulite metamorphism and migmatization. Older, possibly xenocrystic zircons give ages of ≃3.35, 3.65 and ≃3.8 Ga. Younger zircons grew at 2.7 and 2.85 Ga in response to events, including the second granulite metamorphism at 2.7 Ga, that culminated in the intrusion of the Bridger batholith and migmatization at 2.67 Ga. These data support the field and petrographic evidence for two granulite events and provide some temporal constraints for the formation of continental crust in the Early and Middle Archean in the Wyoming Province.  相似文献   

16.
报道了内蒙索仑缝合带附近的锡林浩特杂岩和苏左旗混杂带中蓝片岩块的锆石U-Pb年代学数据.锡林浩特杂岩中碎屑锆石来源复杂,从晚太古至晚古生代均有.最年轻的碎屑锆石U-Pb年龄为280~340Ma,与该区最年轻的弧岩浆岩年龄一致,表明该杂岩的原岩最终形成于晚古生代,而不是前寒武陆块残留.锡林浩特杂岩原岩的沉积源区主要是古生代的孤岩浆岩和部分裸露的前寒武陆壳,可能是弧前沉积建造.蓝片岩的锆石U-Pb年龄为318±5Ma(范围338~280Ma),这些锆石显示典型岩浆振荡环带结构,因此该年龄可能代表其原岩形成年龄,而其变质应该在280Ma之后.所以,锡林浩特杂岩和混杂带中蓝片岩块的变质变形作用可能发生在晚二叠,与索仑缝合带强烈的弧陆碰撞有关,暗示索仑缝合带的碰撞缝合时间在晚二叠,而不是许多人坚持的泥盆纪.  相似文献   

17.
大别山东部花岗片麻岩的锆石U-Pb年龄   总被引:29,自引:0,他引:29  
花岗片麻岩是大别山区除超高压变质杂岩外的另一种重要岩石类型,本文测得南大别二长花岗片麻岩中单颗粒锆石U-Pb不一致线的上交点年龄为789±43 Ma.位于五河一水吼韧性剪切带南缘的糜棱岩化二长花岗片麻岩中锆石的207Pb/206Pb表面年龄接近一致年龄,为715~777 Ma,平均757 Ma,U-Pb不一致线的上交点年龄为815±70 Ma,下交点年龄为482±167 Ma.北大别石英二长片麻岩中锆石207Pb/206表面年龄的变化范围较广,介于594~700 Ma,平均为649 Ma,U-Pb不一致线的上、下交点年龄分别为814±97 Ma和477±77 Ma.这说明这些正片麻岩的侵位时间范围大致为750~850 Ma的晚元古代;南、北大别正片麻岩中的锆石年代学显示它们可能具有相似的形成与演化历史;约480 Ma前后的加里东运动对大别山地区可能也有影响.  相似文献   

18.
The Liushanyan deposit is an important volcanic‐host massive sulfide (VMS) Cu–Zn deposit in the Qinling‐Tongbai‐Dabie orogenic belt, central China, with reserve of 2.38 Mt Cu and 16.11 Mt Zn. Orebodies occur in the meta‐quartz keratophyre of the Liushanyan formation. In this paper, we present textural features and laser ablation ICP‐MS U–Pb dating results of zircons from the ore‐bearing mylonitized meta‐quartz keratophyre. The hydrothermal zircons are distinct from metamorphic zircons in this rock, showing low cathodoluminescence (CL) response and hydrothermal rims (black in CL images). They have relatively flat light rare earth element patterns and high La content and low (Sm/La)N and Ce/Ce* values. These features are typical of hydrothermal zircons. The cores of metamorphic zircons yield a weighted mean 206Pb/238U age of 900 ± 26 Ma, interpreted as the volcanic and related VMS mineralizing age. Two much younger events are also recorded by zircons in this rock: (i) the Early Silurian amphibolites–greenschist facies metamorphism at 435 ± 26 Ma; and (ii) the growth of hydrothermal zircons at ca. 241 ± 1 Ma, associated with the ductile shear deformation. The Silurian metamorphic event is probably associated with the arc–continent collision, while the Triassic ductile deformation event formed in the final continent–continent collision setting.  相似文献   

19.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   

20.
A typical HP/MT (high pressure/medium temperature) eclogite from Xiongdian, northwestern Dabie Mountains, has been geochronologically studied using the single-zircon U-Pb, 40Ar-39Ar and Sm-Nd methods. Prismatic zircons occurring as inclusions within garnets define a minimum crystallization age of 399.5±1.6 Ma. 40Ar-39Ar dating on amphibole gives a plateau age.of 399.2 ± 4 Ma, which is interpreted as a retrogression age of amphibolite facies. This integrated study enables us to conclude that the age of high-pressure metamorphism is older than 399.5 ± 1.6 Ma, suggesting Caledonian collision between the North China and Yangtze plates. Round zircon within the aggregate of quartz and muscovite gives a concordant age of 301± 2 Ma, reflecting a later retrogression event. An age profile of post-eclogite metamorphism is documented, including amphibolite facies metamorphism at 399.2 Ma shortly after eclogitization and later retrogressive metamorphism at 301 Ma. Sm-Nd mineral isochron of garnet+omphacite gives  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号