首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract— The mid-infrared (4000–450 cm?1; 2.5–22.2 μm) transmission spectra of seven Antarctic ureilites and 10 Antarctic H-5 ordinary chondrites are presented. The ureilite spectra show a number of absorption bands, the strongest of which is a wide, complex feature centered near 1000 cm?1 (10 μm) due to Si-O stretching vibrations in silicates. The profiles and positions of the substructure in this feature indicate that Mg-rich olivines and pyroxenes are the main silicates responsible. The relative abundances of these two minerals, as inferred from the spectra, show substantial variation from meteorite to meteorite, but generally indicate olivine is the most abundant (olivine:pyroxene = 60:40 to 95:5). Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of ureilites. The H-5 ordinary chondrites spanned a range of weathering classes and were used to provide a means of addressing the extent to which the ureilite spectra may have been altered by weathering processes. It was found that, while weathering of these meteorites produces some weak bands due to the formation of small amounts of carbonates and hydrates, the profile of the main silicate feature has been little affected by Antarctic exposure in the meteorites studied here. The mid-infrared ureilite spectra provide an additional means of testing potential asteroidal parent bodies for the ureilites. At present, the best candidates include the subset of S-type asteroids having low albedos and weak absorption features in the near infrared.  相似文献   

2.
Absorption coefficients associated with atomic motions of species expected in astronomical environments are determined from infrared measurements of various hydrosilicates, hydrated magnesium oxide, and the Al-bearing chain silicate, sapphirine. Band types measured include O–H stretching modes near 3 μm, Si–O stretching motions near 10 μm, Si–O–Si bends near 14 μm, O–Si–O bends near 20 μm, and translations of cations such as Mg and Ca near 50–200 μm. We obtain data from films of varying thickness and use a ratioing method. First, bandstrengths of O–H fundamentals were determined from spectra obtained from films of controlled thicknesses, generally 6 μm. The O–H absorbance strength was then used to accurately determine thickness for a thinner film of each mineral (found to be  <1 μm  ), thus providing bandstrengths of all other absorptions. Thin films were prepared such that the fundamental lattice modes showed intrinsic behaviour (i.e. band shapes were unchanged upon further thinning) and O–H modes are well resolved above the spectral noise. Bandstrengths were found to depend weakly on structure and should be applicable to other silicate minerals, allowing estimation of elemental concentrations independent of knowing the speciation of dust in astronomical environments. Comparison with observational data of NGC 6302 suggests that lizardite and saponite could be present in addition to refractory minerals.  相似文献   

3.
We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys T0-T10 (July 2004-January 2006). The spectra characterize various regions on Titan from 70° S to 70° N with a variety of emission angles. We study the molecular signatures observed in the mid-infrared CIRS detector arrays (FP3 and FP4, covering roughly the 600-1500 cm−1 spectral range with apodized resolutions of 2.54 or 0.53 cm−1). The composite spectrum shows several molecular signatures: hydrocarbons, nitriles and CO2. A firm detection of benzene (C6H6) is provided by CIRS at levels of about 3.5×10−9 around 70° N. We have used temperature profiles retrieved from the inversion of the emission observed in the methane ν4 band at 1304 cm−1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. No longitudinal variations were found for these gases. Little or no change is observed generally in their abundances from the south to the equator. On the other hand, meridional variations retrieved for these trace constituents from the equator to the North ranged from almost zero (no or very little meridional variations) for C2H2, C2H6, C3H8, C2H4 and CO2 to a significant enhancement at high northern (early winter) latitudes for HCN, HC3N, C4H2, C3H4 and C6H6. For the more important increases in the northern latitudes, the transition occurs roughly between 30 and 50 degrees north latitude, depending on the molecule. Note however that the very high-northern latitude results from tours TB-T10 bear large uncertainties due to few available data and problems with latitude smearing effects. The observed variations are consistent with some, but not all, of the predictions from dynamical-photochemical models. Constraints are set on the vertical distribution of C2H2, found to be compatible with 2-D equatorial predictions by global circulation models. The D/H ratio in the methane on Titan has been determined from the CH3D band at 1156 cm−1 and found to be . Implications of this deuterium enrichment, with respect to the protosolar abundance on the origin of Titan, are discussed. We compare our results with values retrieved by Voyager IRIS observations taken in 1980, as well as with more recent (1997) disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to better comprehend the physical phenomena on Titan.  相似文献   

4.
5.
Abstract— Infrared diffuse reflectance spectra (2.53–25 μm) of some carbonaceous (C) chondrites were measured. The integrated intensity of the absorption bands near 3 μm caused by hydrous minerals were compared with the modal content of hydrous minerals for the meteorites. The CM and CI chondrites show larger values of the integrated intensity than those of the unique C chondrites Y82162, Y86720 and B7904, suggesting that the amount of hydrous minerals in the CM and CI chondrites is larger, which supports the contention that hydrous minerals were dehydrated by thermal metamorphism in the unique chondrites. Orgueil (CI) has the largest value of the integrated intensity among the C chondrites we measured and shows a sharp absorption band at 3685 cm?1 (2.71 μm) that is not seen in the spectra of the CM chondrites. There is an excellent correlation between the observed hydrogen content in C chondrites and the integrated intensity. The CM chondrites show a wide variation in the strength of absorption bands at 1470 cm?1 (6.8 μm), despite the similarity in absorption features near 3 μm for all CM chondrites. The 1470 cm?1 band could be due to the presence of some hydrocarbons but may also be a result of terrestrial alteration processes.  相似文献   

6.
7.
The potential of high-resolution spatial interferometry for detailed mapping and precision astrometry in the mid-infrared region, somewhat analogous to interferometry now done in the microwave region, is discussed from an instrumental point of view. Some results from a prototype system and from tests of atmospheric properties are given. The design of a more advanced two-telescope system now under construction is outlined. This involves movable telescopes of 1.65 m aperture and of high precision, using heterodyne detection of infrared in the 10 Μm atmospheric window.  相似文献   

8.
Based on the Seventh Data Release(DR7) quasar catalog from the Sloan Digital Sky Survey,we investigate the variability of optical quasars in W1,W2,W3 and W4 bands of the Wide-field Infrared Survey Explorer(WISE) and the Near-Earth Object Wide-field Infrared Survey Explorer(NEOWISE).Adopting the structure function(SF) method,we calculate the SF(δt = 1 yr) which shows no obvious correlations with the bolometric luminosity,the black hole mass and the Eddington ratio.The ensemble SFs in W1 and W2 bands show that the SF slopes are steeper than those in previous studies which may be caused by different cadence and observational epoch number.We further investigate the relation of variability amplitude σmbetween mid-infrared band and optical band,but no obvious correlation is found.No correlation is found between W1–W2 and g-r color.We think that the mid-infrared emission of quasars may be smoothed out by the extended dust distribution,thus leading to no obvious correlation.For the radio-loud quasar sub-sample,we further analyze the relation between the variability amplitude in the mid-infrared band and the radio luminosity at 6 cm,but no obvious correlations are found,which indicate the mid-infrared emission contributed from the synchrotron radiation of the relativistic jet is very weak.  相似文献   

9.
10.
We present basic observational strategies for ASTRO-F [also known as the Infra-Red Imaging Surveyor (IRIS) ] to be launched in 2004 by the Japanese Institute of Space and Astronautical Science (ISAS). We examine two survey scenarios, a deep ∼1 deg2 survey reaching sensitivities an order of magnitude below all but the deepest surveys performed by ISO in the mid-IR, and a shallow ∼18  deg2 mid-IR (7–25μm in six bands) covering an area greater than the entire area covered by all ISO mid-IR surveys. Using two cosmological models, the number of galaxies predicted for each survey is calculated. The first model uses an enhancement of a classical (1+ z )3.1 pure luminosity evolution model by Pearson & Rowan-Robinson. The second model incorporates a strongly evolving ultraluminous infrared galaxy component. For the deep survey, between 20 000 and 30 000 galaxies should be detected in the shortest wavebands, and ≈5000 in the longest (25-μm) band. It is predicted that the shallow survey will detect of the order of 100 000–150 000 sources. We find that for both ASTRO-F and other small-aperture space telescopes, confusion due to faint sources may be severe, especially at the longest mid-IR wavelengths. Using the exceptional range of observational options provided by ASTRO-F (nine wavelength filters and spectroscopic ability from 2.2 to 25 μm), we show that by combining the mid-IR observations with the near-IR camera on ASTRO-F , both the different galaxy populations and rough photometric redshifts can be distinguished in the colour–colour plane. In its role as a surveyor (plus near-IR spectroscopic ability) ASTRO-F will complement well the SIRTF space observatory mission.  相似文献   

11.
The presence of water-bearing minerals on Mars has long been discussed, but little or no data exist showing that minerals such as smectites and zeolites may be present on the surface in a hydrated state (i.e., that they could contain H2O molecules in their interlayer or extra-framework sites, respectively). We have analyzed experimental thermodynamic and X-ray powder diffraction data for smectite and the most common terrestrial zeolite, clinoptilolite, to evaluate the state of hydration of these minerals under martian surface conditions. Thermodynamic data for clinoptilolite show that water molecules in its extra-framework sites are held very strongly, with enthalpies of dehydration for Ca-clinoptilolite up to three times greater than that for liquid water. Using these data, we calculated the Gibbs free energy of hydration of clinoptilolite and smectite as a function of temperature and pressure. The calculations demonstrate that these minerals would indeed be hydrated under the very low-P (H2O) conditions existing on Mars, a reflection of their high affinities for H2O. These calculations assuming the partial pressure of H2O and the temperature range expected on Mars suggest that, if present on the surface, zeolites and Ca-smectites could also play a role in affecting the diurnal variations in martian atmospheric H2O because their calculated water contents vary considerably over daily martian temperature ranges. The open crystal structure of clinoptilolite and existing hydration and kinetic data suggest that hydration/dehydration are not kinetically limited. Based on these calculations, it is possible that hydrated zeolites and clay minerals may explain some of the recent observations of significant amounts of hydrogen not attributable to water ice at martian mid-latitudes.  相似文献   

12.
Thermal-infrared imaging of Jupiter and Saturn using the NASA/IRTF and Subaru observatories are quantitatively analyzed to assess the capabilities for reproducing and extending the zonal mean atmospheric results of the Cassini/CIRS experiment. We describe the development of a robust, systematic and reproducible approach to the acquisition and reduction of planetary images in the mid-infrared (7-25 μm), and perform an adaptation and validation of the optimal estimation, correlated-k retrieval algorithm described by Irwin et al. [Irwin, P., Teanby, N., de Kok, R., Fletcher, L., Howett, C., Tsang, C., Wilson, C., Calcutt, S., Nixon, C., Parrish, P., 2008. J. Quant. Spectrosc. Radiat. Trans. 109 (6), 1136-1150] for channel-integrated radiances. Synthetic spectral analyses and a comparison to Cassini results are used to verify our abilities to retrieve temperatures, haze opacities and gaseous abundances from filtered imaging. We find that ground-based imaging with a sufficiently high spatial resolution is able to reproduce the three-dimensional temperature and para-H2 fields measured by spacecraft visiting Jupiter and Saturn, allowing us to investigate vertical wind shear, pressure and, with measured cloud-top winds, Ertel potential vorticity on potential temperature surfaces. Furthermore, by scaling vertical profiles of NH3, PH3, haze opacity and hydrocarbons as free parameters during thermal retrievals, we can produce meridional results comparable with CIRS spectroscopic investigations. This paper demonstrates that mid-IR imaging instruments operating at ground-based observatories have access to several dynamical and chemical diagnostics of the atmospheric state of the gas giants, offering the prospect for quantitative studies over much longer baselines and often covering much wider areas than is possible from spaceborne platforms.  相似文献   

13.
Galaxy source counts that simultaneously fit the deep mid-infrared surveys at 24 microns and 15 microns made by the Spitzer Space Telescope and the Infrared Space Observatory ( ISO ), respectively, are presented for two phenomenological models. The models are based on starburst and luminous infrared galaxy dominated populations. Both models produce excellent fits to the counts in both wavebands and provide an explanation for the high-redshift population seen in the longer Spitzer 24-micron band supporting the hypothesis that they are luminous–ultraluminous infrared galaxies at   z = 2–3  , being the mid-infrared counterparts to the submillimetre galaxy population. The source counts are characterized by strong evolution to redshift unity, followed by less drastic evolution to higher redshift. The number–redshift distributions in both wavebands are well explained by the effect of the many mid-infrared features passing through the observation windows. The sharp upturn at around a millijansky in the 15-μm counts in particular depends critically on the distribution of mid-infrared features around 12 μm, in the assumed spectral energy distribution.  相似文献   

14.
15.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   

16.
We use Mie scattering theory to determine the expected thermal emission from dust grains in cometary comae and apply these results to mid-infrared images of comet Hyakutake (C/1996 B2) obtained preperihelion in 1996 March. Calculations were performed for dust grains in the size range from 0.1 to 10 micrometers for two different compositions: amorphous olivine (a silicate glass) and an organic residue mixture. The resulting emission efficiencies are complicated functions of wavelength and particle size and are significantly different for the two materials in question. The Hyakutake data set consists of three nights of high-resolution imaging (100-150 km pixel-1 at the comet) of the inner coma at 8.7, 11.7, 12.5, and 19.7 micrometers. Attempts to fit the observed colors (ratios of fluxes at different wavelengths) using a single grain composition failed. However, fits to the data were achieved for all three nights using a mixture of approximately 1 micrometer olivine grains and approximately 7 micrometers organic grains. The resulting olivine mass fraction was between 8% and 16% of the total dust mass-loss rate. We also estimate the radius of the nucleus to be r = 2.1 +/- 0.4 km.  相似文献   

17.
Contrary to previous work, we find that the decreasing intensity of fundamental molecular vibration bands with decreasing particle size is due primarily to increasing porosity of the finer particle size ranges, rather than to particle size per se. This implies that laser reflectance measurements from orbiting spacecraft should avoid loss of spectral contrast for fine particulate surfaces, because such measurements near zero phase angle will benefit from the opposition effect.  相似文献   

18.
We have produced high-resolution images of the nuclear region of M82 with SpectroCam-10, a mid-infrared instrument at the Palomar 5 m telescope. These images were taken at 11.7 m and 9.8 m with a 1m filter bandpass at the diffraction limit of 0.6 arcsec, making them the highest resolution maps yet available of M82. In addition, we have obtained high-resolution (/=2000) maps of the velocity field of the nuclear disk of M82 in the 12.81 m line emission of [NeII]. In these proceedings we present the 11.7 m image, which will appear together with the 9.8 m map and the [Ne II] spectra in a subsequent paper, now in preparation. This image shows very clearly a bridge structure joining the eastern and western clusters.  相似文献   

19.
We present spatially resolved 10-μm spectra of the nucleus of IC 5063 that are near-diffraction-limited. The observations were obtained with T-ReCS, the mid-infrared (mid-IR) imager and spectrometer on the 8.1-m Gemini South telescope, with the slit aligned at a position angle on the sky along the direction of the cone of narrow-line emission. The spectra cover the nucleus and the inner reaches of the ionization cones at a spatial resolution of approximately 0.4 arcsec (90 pc). Individual spectra, extracted in steps in the spatial direction along the slit, reveal variations in continuum slope and silicate feature profile and depth on subarcsecond scales, illustrating in unprecedented detail the complexity of the circumnuclear regions of this galaxy at mid-IR wavelengths. The dust population in the vicinity of the narrow-line region, north-west of the nuclear position, is significantly warmer than that to the south-east of the nucleus. This is consistent with an observation of the cooler dust associated with the outer reaches of the postulated torus that obscures the type 1 nucleus in this object.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号