首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examine the K shell emission lines produced by isothermal and simple multiphase models of the hot gas in elliptical galaxies and galaxy clusters to determine the most effective means for constraining the width of the differential emission measure, ( T  ), in these systems which we characterize by a dimensionless parameter, . Comparison of line ratios of two-temperature  ( <1)  and cooling flow  ( 1)  models is presented in detail. We find that a two-temperature model can approximate very accurately a cooling flow spectrum over 0.510 keV.
We re-analyse the ASCA spectra of three of the brightest galaxy clusters to assess the evidence for multiphase gas in their cores: M87 (Virgo), the Centaurus cluster and the Perseus cluster. K emission-line blends of Si, S, Ar, Ca and Fe are detected in each system, as is significant Fe K emission. The Fe K /K ratios are consistent with optically thin plasma models and do not suggest resonance scattering in these systems. Consideration of both the ratios of H-like to He-like K lines and the local continuum temperatures clearly rules out isothermal gas in each case. To obtain more detailed constraints, we fitted plasma models over 1.69 keV where the emission is dominated by these K shell lines and by continuum. In each case the ASCA spectra cannot determine whether the gas emits at only two temperatures or over a continuous range of temperatures as expected for a cooling flow. The metal abundances are near-solar for all of the multiphase models. We discuss the implications of these results and examine the prospects for determining the temperature structure in these systems with upcoming X-ray missions.  相似文献   

3.
We present a joint analysis of near-ultraviolet ( NUV ) data from the GALEX ( Galaxy Evolution Explorer ) mission and (optical) colour profiles for a sample of seven brightest cluster galaxies (BCGs) in the Canadian Cluster Comparison Project. We find that every BCG, which has a blue rest-frame UV colour, also shows a blue core in its optical colour profile. Conversely, BCGs that lack blue cores and show monotonic colour gradients typical of old elliptical galaxies are red in the UV. We interpret this as evidence that the NUV enhancement in the blue BCGs is driven by recent star formation and not from old evolved stellar populations such as horizontal branch stars. Furthermore, the UV enhancement cannot be from an active galactic nuclei (AGN) because the spatial extent of the blue cores is significantly larger than the possible contamination region due to a massive black hole. The recent star formation in the blue BCGs typically has an age less than 200 Myr and contributes mass fractions of less than a per cent. Although the sample studied here is small, we demonstrate, for the first time , a one-to-one correspondence between blue cores in elliptical galaxies (in particular BCGs) and a NUV enhancement observed using GALEX . The combination of this one-to-one correspondence and the consistently young age of recent star formation, coupled with additional correlations with the host cluster's X-ray properties, strongly suggests that the star formation is fuelled by gas cooling out of the intracluster medium. In turn, this implies that any AGN heating of the intracluster medium in massive clusters only acts to reduce the magnitude of the cooling flow and once this flow starts, it is nearly always active. Collectively, these results suggest that AGN feedback in present-day BCGs, while important, cannot be as efficient as suggested by the recent theoretical model by proposed by De Lucia et al.  相似文献   

4.
We analyse the K -band Hubble diagram for a sample of brightest cluster galaxies (BCGs) in the redshift range 0< z <1. In good agreement with earlier studies, we confirm that the scatter in the absolute magnitudes of the galaxies is small (0.3 mag). The BCGs exhibit very little luminosity evolution in this redshift range: if q 0=0.0, we detect no luminosity evolution; for q 0=0.5, we measure a small negative evolution (i.e., BCGs were about 0.5 mag fainter at z =1 than today). If the mass in stars of these galaxies had remained constant over this period of time, substantial positive luminosity evolution would be expected: BCGs should have been brighter in the past, since their stars were younger. A likely explanation for the observed zero or negative evolution is that the stellar mass of the BCGs has been assembled over time through merging and accretion, as expected in hierarchical models of galaxy formation. The colour evolution of the BCGs is consistent with that of an old stellar population ( z for>2) that is evolving passively. We can thus use evolutionary population synthesis models to estimate the rate of growth in stellar mass for these systems. We find that the stellar mass in a typical BCG has grown by a factor ≃2 since z ≃1 if q 0=0.0, or by factor ≃4 if q 0=0.5. These results are in good agreement with the predictions of semi-analytic models of galaxy formation and evolution set in the context of a hierarchical scenario for structure formation. The models predict a scatter in the luminosities of the BCGs that is somewhat larger than the observed one, but that depends on the criterion used to select the model clusters.  相似文献   

5.
6.
7.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

8.
We search for ongoing major dry mergers in a well-selected sample of local brightest cluster galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry mergers, which are selected as pairs (or triples) with r -band magnitude difference  δ m r < 1.5  and projected separation   r p < 30 kpc  , and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average  ∼0.6 ( t merge/0.3 Gyr)−1  major dry mergers and through this process increases their luminosity (mass) by 15 per cent  ( t merge/0.3 Gyr)−1 ( f mass/0.5)  on average since   z = 0.7  , where t merge is the merging time-scale and f mass is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.  相似文献   

9.
10.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

11.
We use the Sloan Digital Sky Survey (SDSS) to construct a sample of 625 brightest group and cluster galaxies (BCGs) together with control samples of non-BCGs matched in stellar mass, redshift and colour. We investigate how the systematic properties of BCGs depend on stellar mass and on their privileged location near the cluster centre. The groups and clusters that we study are drawn from the C4 catalogue of Miller et al. but we have developed improved algorithms for identifying the BCG and for measuring the cluster velocity dispersion. Since the SDSS photometric pipeline tends to underestimate the luminosities of large galaxies in dense environments, we have developed a correction for this effect which can be readily applied to the published catalogue data. We find that BCGs are larger and have higher velocity dispersions than non-BCGs of the same stellar mass, which implies that BCGs contain a larger fraction of dark matter. In contrast to non-BCGs, the dynamical mass-to-light ratio of BCGs does not vary as a function of galaxy luminosity. Hence BCGs lie on a different Fundamental Plane than ordinary elliptical galaxies. BCGs also follow a steeper Faber–Jackson relation than non-BCGs, as suggested by models in which BCGs assemble via dissipationless mergers along preferentially radial orbits. We find tentative evidence that this steepening is stronger in more massive clusters. BCGs have similar mean stellar ages and metallicities to non-BCGs of the same mass, but they have somewhat higher α/Fe ratios, indicating that star formation may have occurred over a shorter time-scale in the BCGs. Finally, we find that BCGs are more likely to host radio-loud active galactic nuclei than other galaxies of the same mass, but are less likely to host an optical active galactic nucleus (AGN). The differences we find are more pronounced for the less massive BCGs, i.e. they are stronger at the galaxy group level.  相似文献   

12.
The brightest, or first-ranked, galaxies (BCGs) in rich clusters show a very small dispersion in luminosity, making them excellent standard candles. This small dispersion raises questions about the nature of BCGs. Are they simply the extremes of normal galaxies formed via a stochastic process, or do they belong to a special class of atypical objects? If they do, are all BCGs special, or do normal galaxies compete for the first rank? To answer these questions, we undertake a statistical study of BCG magnitudes using results from extreme value theory. Two-population models do better than one-population models. A simple scenario where a random boost in the magnitude of a fraction of bright normal galaxies forms a class of atypical galaxies best describes the observed distribution of BCG magnitudes.  相似文献   

13.
We present a ground-based, near-infrared, K -band image and a Hubble Space Telescope ( HST ) WFPC2 image of the brightest cluster galaxy in Abell 193 (IC 1695). This object was selected as the central cluster galaxy using X-ray information. Both images reveal a triple nucleus structure. Previously, this galaxy was thought to have only two nuclei. We present colours and magnitudes and a colour plot of the three nuclei. The nuclear structure and colours of the nuclei in this galaxy suggest that a merger may have taken place in its recent history.  相似文献   

14.
We present an analysis of X-ray colour maps of the cores of clusters of galaxies, formed from the ratios of counts in different X-ray bands. Our technique groups pixels lying between contours in an adaptively smoothed image of a cluster. We select the contour levels to minimize the uncertainties in the colour ratios, whilst preserving the structure of the object. We extend the work of Allen & Fabian by investigating the spatial distributions of cooling gas and absorbing material in cluster cores. Their sample is almost doubled: we analyse archive ROSAT Position Sensitive Proportional Counter (PSPC) data for 33 clusters from the sample of the 55 brightest X-ray clusters in the sky. Many of our clusters contain strong cooling flows. We present colour maps of a sample of the clusters, in addition to adaptively smoothed images in different bands. Most of the cooling flow clusters display little substructure, unlike several of the non-cooling-flow clusters.
We fitted an isothermal plasma model with galactic absorption and constant metallicity to the mid-over-high energy colours in our clusters. Those clusters with known strong cooling flows have inner contours which fit a significantly lower temperature than the outer contours. Clusters in the sample without strong cooling flows show no significant temperature variation. The inclusion of a metallicity gradient alone was not sufficient to explain the observations. A cooling flow component plus a constant temperature phase did account for the colour profiles in clusters with known strong cooling flow components. We also had to increase the levels of absorbing material to fit the low-over-high colours at the cluster centres. Our results provide more evidence that cooling flows accumulate absorbing material. No evidence for increased absorption was found for the non-cooling-flow clusters.  相似文献   

15.
16.
17.
We present kinematic parameters and absorption line strengths for three brightest cluster galaxies, NGC 6166, 6173 and 6086. We find that NGC 6166 has a velocity dispersion profile which rises beyond 20 arcsec from the nucleus, with a halo velocity dispersion in excess of 400 km s−1. All three galaxies show a positive and constant h 4 Hermite moment. The rising velocity dispersion profile in NGC 6166 thus indicates an increasing mass-to-light ratio. Rotation is low in all three galaxies, and NGC 6173 and 6086 show possible kinematically decoupled cores. All three galaxies have Mg2 gradients similar to those found in normal bright ellipticals, which are not steep enough to support simple dissipative collapse models, but these could be accompanied by dissipationless mergers which would tend to dilute the abundance gradients. The [Mg/Fe] ratios in NGC 6166 and 6086 are higher than that found in NGC 6173, and if NGC 6173 is typical of normal bright ellipticals, this suggests that cDs cannot form from late mergers of normal galaxies.  相似文献   

18.
Recent analyses of Newton-XMM and Chandra data of the cores of X-ray bright clusters of galaxies show that modelling with a multi-phase gas in which several temperatures and densities are in equilibrium might not be appropriate. Instead, a single-phase model seems able to reproduce properly the spectra collected in annuli from the central region. The measured single-phase temperature profiles indicate a steep positive gradient in the central  100–200 kpc  and the gas density shows a flat profile in the central few 10s of kpc. Given this observational evidence, we estimate the contribution to the projected-on-the-sky rings from the cluster emissivity as function of the shell volume fraction sampled. We show that the observed projected X-ray emission mimics the multi-phase status of the plasma even though the input distribution is single-phase. This geometrical projection affects (i) analyses of data where insufficient spatial resolution is accessible, (ii) the central bin when its dimension is comparable to the extension of any flatness in the central gas density profile.  相似文献   

19.
The gas temperature in the cores of many clusters of galaxies drops inward by about a factor of 3 or more within the central 100-kpc radius. The radiative cooling time drops over the same region from 5 or more Gyr down to below a few 108 yr. Although this indicates that cooling flows are taking place, XMM-Newton spectra show no evidence for strong mass cooling rates of gas below  1–2 keV  . The soft X-ray luminosity expected from steady cooling flows is missing. Here we outline and test the energetics of a cold mixing model in which gas below  1–2 keV  falls from the flow and is rapidly cooled by mixing with cold gas. The missing X-ray luminosity can emerge in the ultraviolet, optical and infrared bands, where strong emission nebulosities are commonly seen. We explore further the requirements for any heat sources that balance the radiative cooling in cluster cores.  相似文献   

20.
Detailed three-dimensional numerical simulations of an elliptical galaxy orbiting in a gas-rich cluster of galaxies indicate that gas dynamic stripping is less efficient than the results from previous, simpler calculations by Takeda et al. and Gaetz et al. implied. This result is consistent with X-ray data for cluster elliptical galaxies. Hydrodynamic torques and direct accretion of orbital angular momentum can result in the formation of a cold gaseous disc, even in a non-rotating galaxy. The gas lost by cluster galaxies via the process of gas dynamic stripping tends to produce a colder, chemically enriched cluster gas core. A comparison of the models with the available X-ray data of cluster galaxies shows that the X-ray luminosity distribution of cluster galaxies may reflect hydrodynamic stripping, but also that a purely hydrodynamic treatment is inadequate for the cooler interstellar medium near the centre of the galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号