首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed an efficient method for determining the surface-density distribution in a self-gravitating disk with an isolated central point mass from a specified angular-velocity distribution in the disk. An upper limit for the galactic-disk mass is shown to exist at a given black-hole mass. This limit significantly depends on the choice of rotation curves.  相似文献   

2.
Available velocity dispersion estimates for the old stellar population of galactic disks at galactocentric distances r?2L (where L is the photometric radial scale length of the disk) are used to determine the threshold local surface density of disks that are stable against gravitational perturbations. The mass of the disk Md calculated under the assumption of its marginal stability is compared with the total mass Mt and luminosity L B of the galaxy within r=4L. We corroborate the conclusion that a substantial fraction of the mass in galaxies is probably located in their dark halos. The ratio of the radial velocity dispersion to the circular velocity increases along the sequence of galactic color indices and decreases from the early to late morphological types. For most of the galaxies with large color indices (B–V)0>0.75, which mainly belong to the S0 type, the velocity dispersion exceeds significantly the threshold value required for the disk to be stable. The reverse situation is true for spiral galaxies: the ratios Md/LB for these agree well with those expected for evolving stellar systems with the observed color indices. This suggests that the disks of spiral galaxies underwent no significant dynamical heating after they reached a quasi-equilibrium stable state.  相似文献   

3.
4.
We analyze the R-and K s-band photometric profiles for two independent samples of edge-on galaxies. The thickness of old stellar disks is shown to be related to the relative masses of the spherical and disk components of galaxies. The radial-to-vertical scale length ratio for galactic disks increases (the disks become thinner) with increasing total mass-to-light ratio of the galaxies, which reflects the relative contribution of the dark halo to the total mass, and with decreasing central deprojected disk brightness (density). Our results are in good agreement with numerical models of collisionless disks that evolved to a marginally stable equilibrium state. This suggests that, in most galaxies, the vertical stellar-velocity dispersion, on which the equilibrium-disk thickness depends, is close to a minimum value that ensures disk stability. The thinnest edge-on disks appear to be low-brightness galaxies in which the dark-halo mass far exceeds the stellar-disk mass.  相似文献   

5.
The puzzling correlation between the spin parameter λ of galactic disks and the disk-to-halo mass fraction f disk is investigated. It is shown that such a correlation arises naturally from large uncertainties in determining the virial masses of dark matter halos. This result indicates that halo properties derived from fits to observed rotation curves are still very uncertain. An analysis of λ versus f disk as function of the adopted halo virial mass shows that for reasonable halo concentrations f disk ≈ 0.01 - 0.07 which is significantly smaller than the universal baryon fraction. Most of the available gas either never settled into the galactic disks or was ejected subsequently. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
One of the largest rotation curve data bases of spiral galaxies currently available is that provided by Persic& Salucci (1995; hereafter, PS) which has been derived by them from unreduced rotation curve data of 965 southern sky spirals obtained by Mathewson, Ford& Buchhorn (1992; hereafter, MFB). Of the original sample of 965 galaxies, the observations on 900 were considered by PS to be good enough for rotation curve studies, and the present analysis concerns itself with these 900 rotation curves. The analysis is performed within the context of the hypothesis that velocity fields within spiral discs can be described by generalized power-laws. Rotation curve data was found to impose an extremely strong and detailed correlation between the free parameters of the power-law model, and this correlation accounts for virtually all the variation in the pivotal diagram. In the process, the analysis reveals completely unexpected structure which indicates that rotation curves can be partitioned into well-defined discrete subclasses.  相似文献   

7.
The dark matter accretion theory (around a central body) of the author on the basis of his 5‐dimensional Projective Unified Field Theory (PUFT) is applied to the orbital motion of stars around the center of the Galaxy. The departure of the motion from Newtonian mechanics leads to approximately flat rotation curves being in rough accordance with the empirical facts. The spirality of the motion is investigated.  相似文献   

8.
9.
Estimates are made of the accuracy with which the brightness distributions across the disks of stars can be reconstructed through analysis of data from high precision space-based photometry of classical eclipsing systems and observations of the transit of planets across stellar disks. The ill-posed reconstruction problem was solved on a compact set of monotonically nonincreasing, upwardly convex, non-negative functions. One of the difficulties with this method in the case of stars with thin photospheres is the poor convergence of the solution at the point where the brightness distribution has a discontinuity at the edge of the star's disk. Nevertheless, the use of this method for analysis of high precision observational data is justified, since it can be used to obtain an estimate of the limb darkening that is independent of any model assumptions. The reconstructed brightness distribution for the star HD 209458, for which the transit of a planet over its disk was observed with the HST space telescope, is in good agreement with the results of a nonlinear model fit. Translated from Astrofizika, Vol. 51, No. 4, pp. 595–606 (November 2008).  相似文献   

10.
We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.  相似文献   

11.
Oded Regev   《New Astronomy Reviews》2008,51(10-12):819
An asymptotic treatment of thin accretion disks, introduced by Kluźniak and Kita [Kluźniak, W., Kita, D., 2000. Three-dimensional structure of an alpha accretion disk. Available from: <arXiv:astro-ph/0006266v1> (KK)] for a steady-state disk flow, is extended to a time-dependent problem. Transient growth of axisymmetric disturbances is analytically shown to occur on the global disk scale. The implications of this result on the theory of hydrodynamical thin accretion disks, as well as future prospects, are discussed.  相似文献   

12.
We use the rotation curves of 13 galaxies to test the nonsymmetric gravitaional theory (NGT). If we follow Moffat's assumption of a constant mass-to-light for all galaxies then we shall find that the two supposedly universal constants r0, L0 to show a large scatter. By regarding the mass-to-light ratio as a free parameter for each galaxy, and adjusting the values of r0, L0, we find that NGT can well account for the observed rotation curves. Further, the mass-to-light ratios so found show the well-known trend along the Hubble morphological sequence.  相似文献   

13.
Nonstationary hydrodynamic models of a viscous accretion disk around a central compact object were constructed. Two different numerical methods (TVD and SPH) are used to study the dynamics of dissipatively unstable acoustic perturbations at the nonlinear stage in terms of the standard α-disk model. The standard disk accretion in the Shakura-Sunyaev model is unstable against acoustic waves for various parameters of the system. If the α parameter, which specifies the level of turbulent viscosity, exceeds α?0.03, then a complex nonstationary system of small-scale weak shock waves is formed. The growth rate of the perturbations is higher in the central disk region. For α?0.2, the relative shock amplitude can exceed 50% of the equilibrium disk parameters. The reflection of waves from the disk boundaries and their nonlinear interaction are important factors that can produce unsteady accretion. The luminosity of such a disk undergoes quasi-periodic oscillations at a level of several percent (?5%) of the equilibrium level.  相似文献   

14.
The magnetic field in an accretion disk is estimated assuming that all of the angular momentum within prescribed accretion disk radii is removed by a jet. The magnetic field estimated at the base of the jet is extrapolated to the blazar emission region using a model for a relativistic axisymmetric jet combined with some simplifying assumptions based on the relativistic nature of the flow. The extrapolated magnetic field is compared with estimates based upon the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN 421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-Compton models are inconsistent with the magnetic fields extrapolated in this way. However, in two cases inverse Compton models in which a substantial part of the soft photon field is generated locally agree well, mainly because these models imply magnetic field strengths consistent with an important Poynting Flux component. This comparison is based on estimating the mass accretion rate from the jet energy flux. Further comparisons along these lines will be facilitated by independent estimates of the mass accretion rate in blazars and by more detailed models for jet propagation near the black hole.  相似文献   

15.
The current state of knowledge about circumstellar matter of young stellar objects is briefly reviewed. It appears that some very young stars yet to accrete substantial amounts of mass may be seen through their dusty infalling envelopes even at optical wavelengths, because of the presence of holes or large departures from spherical symmetry in the envelopes. The evidence for this picture is summarized in the context of one wellstudied young star, HL Tau, indicating that much of the large-scale structure originally identified as a rotating disk is probably a flattened infalling envelope. Departures from spherical symmetry in protostellar clouds are likely to lead to quite flattened structures once collapse gets under way, further suggesting that infall in large-scale toroids may be a general feature of low-mass star formation. The best kinematic evidence for Keplerian disk rotation comes from optical and near-infrared high-resolution spectroscopy of the innermost regions of circumstellar disks. Disk masses are uncertain but are likely to be at least the order of minimum mass solar nebula models, if not much larger.  相似文献   

16.
Recent advances in the observation of star-forming regions at visual, infrared and radio wavelengths have demonstrated that disks or rings of dust and molecules are suspected or even seen to exist around newly borne stars. They might be the prestage of a planetary system. Typical objects of this kind which are discussed in some detail are the bipolar nebula S 106 and the molecular cloud surrounding it as well as the CO outflow source in the dark cloud L 1551 with its central infrared star IRS 5.  相似文献   

17.
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary disks. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface. Magnetically-driven mixing has implications for disk chemistry and evolution of the grain population, and the effective viscous response of the disk determines whether planets migrate inwards or outwards. However, the weak ionisation of protoplanetary disks means that magnetic fields may not be able to effectively couple to the matter. I examine the magnetic diffusivity in a minimum solar nebula model and present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas, except at the disk surfaces where the low density of neutrals permits the ions to remain attached to the field lines. For a standard population of 0.1 μm grains the active surface layers have a combined column Σactive≈2 g cm−2 at 1 AU; by the time grains have aggregated to 3 μm, Σactive≈80 g cm−2. Ionisation in the active layers is dominated by stellar X-rays. In the absence of grains, X-rays maintain magnetic coupling to 10% of the disk material at 1 AU (i.e. Σactive≈150 g cm−2). At 5 AU the Σactive≈Σtotal once grains have aggregated to 1 μm in size.  相似文献   

18.
Numerical simulations of two-component (stars + gas) self-gravitating galactic disks show that the interstellar gas can significantly affect the dynamical evolution of the disk even if its mass fraction (relative to the total galaxy mass) is as low as several percent. Aided by efficient energy dissipation, the gas becomes gravitationally unstable onlocal scale and forms massive clumps. Gravitational scattering of stars by these clumps leads to suppression of bar instability usually seen in heavy stellar disks. In this case, gas inflow towards the galactic center is driven by dynamical friction which gas clumps suffer instead of bar forcing.  相似文献   

19.
In this paper we have presented a very general class of solutions for rotating fluid disks around massive objects (neglecting the self gravitation of the disk) with density as a function of the radial coordinate only and pressure being nonzero. Having considered a number of cases with different density and velocity distributions, we have analysed the stability of such disks under both radial and axisymmetric perturbations. For a perfect gas disk with γ= 5/3 the disk is stable with frequency (MG/r3)1/2 for purely radial pulsation with expanding and contracting boundary. In the case of axisymmetric perturbation the critical γc for neutral stability is found to be much less than 4/3 indicating that such disks are mostly stable under such perturbations. On leave of absence from Government College, Jagdalpur 494005.  相似文献   

20.
We studied global nonaxisymmetric hydrodynamic instabilities in an extensive collection of hot, self-gravitating polytropic disk systems, systems that covered a wide expanse of the parameter space relevant to protostellar and protoplanetary systems. We examined equilibrium disk models varying three parameters: the ratio of the inner to outer equatorial radii, the ratio of star mass to disk mass, and the rotation law exponent q. We took the polytropic index n=1.5 and examined the exponents q=1.5 and 2, and the transitional one q=1.75. For each of these sets of parameters, we examined models with inner to outer radius ratios from 0.1 to 0.75, and star mass to disk mass ratios from 0 to 103. We numerically calculated the growth rates and oscillation frequencies of low-order nonaxisymmetric disk modes, modes with azimuthal dependence ∝e im? . Low-m modes are found to dominate with the character and strength of instability strongly dependent on disk self-gravity. Representatives of each mode type are examined in detail, and torques and mass transport rates are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号