首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1994 Northridge earthquake occurred underneath a densely populated metropolitan area, and was recorded by over 200 strong motion stations in the metropolitan area and vicinity. This rare coincidence made it an ideal case to study, in statistical sense, the correlation of damage to structures with the level of strong shaking, in particular with respect to (1) instrumental characteristics of shaking and (2) the reported site intensity scale. In this paper, statistics for the incidence of red-tagged building in 1 × 1 km2 blocks in San Fernando Valley and Los Angeles is presented and analyzed, as function of the observed peak ground velocity or the local intensity of shaking. The ‘observed’ peak velocity is estimated from contour maps based on the recorded strong motion. The intensity of shaking is estimated from the published intensity map and from our modification of this map to make it more consistent with observed high damage to buildings in some localized areas. Finally, empirical scaling equations are derived which predict the average density of red-tagged buildings (per km2) as a function of peak ground velocity or site intensity of shaking. These scaling equations are specific to the region studied, and apply to Wooden Frame Construction, typical of post World War II period, which is the prevailing building type in the sample studied. These can be used to predict the density of red-tagged buildings per km2 in San Fernando Valley and in Los Angeles for a scenario earthquake or for an ensemble of earthquakes during specified exposure, within the framework of probabilistic seismic hazard analysis. Such predictions will be useful to government officials for emergency planning, to the insurance industry for realistic assessment of insured losses, and to structural engineers for assessment of the overall performance of this type of buildings.  相似文献   

2.
The Northridge earthquake contributed unprecedented detail and quality of data on strong ground motion and on its effects on man-made structures. About 110 fires have been attributed directly to the effects of this earthquake. Two hypotheses for the principal causative agents leading to fire ignition were examined: differential motion and strains in the soil, and inertial forces. The fire-ignition frequency is described with respect to: (1) simple measures of strain in the soil (via density of water pipe breaks, n), (2) occurrence of severely damaged buildings (via density of red-tagged buildings, N), (3) site intensity of shaking, (IMM), and (4) inertial forces (via peak horizontal ground velocity, vm). It is shown that the rate of fires (per unit area) ignited by earthquake shaking can be predicted by several empirical equations of comparable accuracy and in terms of common scaling parameters of strong ground motion.  相似文献   

3.
We present contours of the largest horizontal and vertical recorded peak velocities of strong ground motion during the Northridge, California, earthquake. Above the fault, the horizontal peak velocities exceeded 100 cm/s. The vertical velocities were larger than 20 cm/s. We also present contours of peak horizontal and vertical strain factors. Through most of the San Fernando Valley and the Santa Susana Mountains, the horizontal surface strain factor was larger than 10−3. The largest horizontal strain factor computed was for the Rinaldi Receiving Station ∼10−2·2. The corresponding vertical strains were >10−3·25 and 10−13, respectively. Through most of the Los Angeles Basin the horizontal peak surface strain factors were between 10−3·75 and 10−3.  相似文献   

4.
Results of two detailed ambient vibration surveys of a 7-story reinforced concrete building in Van Nuys, California, are presented. Both surveys were conducted after the building was severely damaged by the 17 January 1994, Northridge earthquake (ML=5.3, epicenter 1.5 km west from the building site) and its early aftershocks. The first survey was conducted on 4 and 5 February 1994, and the second one on 19 and 20 April 1994, about one month after the 20 March aftershock (ML=5.3, epicenter 1.2 km north–west from the building site). The apparent frequencies and two- and three-dimensional mode shapes for longitudinal, transverse and vertical vibrations were calculated. The attempts to detect the highly localized damage by simple spectral analyses of the ambient noise data were not successful. It is suggested that very high spatial resolution of recording points is required to identify localized column and beam damage, due to the complex building behavior, with many interacting structural components. The loss of the axial capacity of the damaged columns could be seen in the vertical response of the columns, but similar moderate or weak damage typically would not be noticed in ambient vibration surveys. Previous analysis of the recorded response of this building to 12 earthquakes suggests that, during large response of the foundation and piles, the soil is pushed sideways and gaps form between the foundation and the soil. These gaps appear to be closing during “dynamic compaction” when the building site is shaken by many small aftershocks. The apparent frequencies of the soil–foundation–structure system appear to be influenced significantly by variations in the effective soil–foundation stiffness. These variations can be monitored by a sequence of specialized ambient vibration tests.  相似文献   

5.
Contour maps of PSV (Pseudo Relative Velocity Spectrum) amplitudes during the Northridge, California, earthquake of 17 January 1994 are presented, based on strong motion recordings throughout the Los Angeles metropolitan area. These maps indicate that the PSV amplitudes do not attenuate uniformly with distance, but may be locally amplified or deamplified by interference of waves reflected from discontinuities and irregularities in the geological structure (boundaries of sedimentary basins, hills and mountains and vertical offsets of basements along faults). The contour maps in this paper represent one interpretation of the distribution of PSV amplitudes based on a limited number of unequally spaced data points, and thus do not capture all details of the actual ground motion (this would require a much denser distribution of strong motion stations). Yet, at locations where there were no strong motion recordings, based on these maps, one can estimate the ground motion more accurately than based on one or few close by recordings. These maps can be used by earthquake engineers to ‘construct’ a PSV spectrum at any site of interest within the area covered. They can also be used for validation of computer codes for simulation of ground motion in basins using simplified geologic models of the area covered by the maps in this paper.  相似文献   

6.
7.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

8.
An approach for simulating near-fault ground motion was presented by combining the finite fault model with a numerical algorithm, named investigated lump method presented in this paper for wave propagation. The investigated lumps are constructed from the auxiliary quadrilateral grids. The dynamic equilibrium equations of a typical investigated lump have been derived and obtained by integrating the stresses along the contour of the investigated lump. The stresses are calculated using the constitutive relations and the interpolation techniques. The investigated lump method is then implemented using the equilibrium equations of investigated lumps and the calculations of stresses alternately in time domain. The stability criterion of the algorithm has been given. Comparisons with the discrete wave-number method solutions for predicting the ground motions at the Pacoima Dam during the San Fernando earthquake show the validity of the method presented in this paper for simulating near-field ground motions. A finite fault source model has been implemented in the algorithm here. The source parameters given by Wald et al. (1996) [18] are applied to synthesize the ground motions at three stations during the 1994 Northridge earthquake. The simulating results qualitatively match to the corresponding ground motion records. The studies demonstrated that the approach presented in this paper is an effective tool for the numerical simulation of near-fault ground motion.  相似文献   

9.
A comparative study of selected bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes is described in this paper. Typical ground motion effects considered include large ground fault displacement, liquefaction, landslide, and strong ground shaking. Issues related to falling spans, inadequate detailing for structural ductility and complex bridge configurations are discussed within the context of the recent seismic design codes of China and the US. A significant lesson learned from the Great Wenchuan earthquake, far beyond the opportunities to improve the seismic design provisions for bridges, is articulated.  相似文献   

10.
    
The spatial relationship between areas with severely damaged (red-tagged) buildings and areas with large strains in the soil (indicated by reported breaks in the water distribution system), observed during the 1994 Northridge earthquake, is analysed. It is shown that these areas can be separated almost everywhere. Minimal overlapping is observed only in the regions with very large amplitudes of shaking (peak ground velocity exceeding about 150 cm s−1). One explanation for this remarkable separation is that the buildings on ‘soft’ soils, which experienced nonlinear strain levels, were damaged to a lesser degree, possibly because the soil absorbed a significant portion of the incident seismic wave energy. As a result, the total number of severely damaged (red-tagged) buildings in San Fernando Valley, Los Angeles and Santa Monica may have been reduced by a factor of two or more. This interpretation is consistent with the recorded peak accelerations of strong motion in the same area. It is concluded that significant reduction in the potential damage to wood frame single family dwellings may be expected in areas where the soil experiences ‘large’ strains (beyond the linear range) during strong earthquake shaking, but not significant differential motions, settlement or lateral spreading, near the surface.  相似文献   

11.
The January 17, 1994 Northridge earthquake (Mw = 6.7, 34.213° N, 118.537° W, depth = 18.4 km) was recorded extensively in the immediate source region by strong, ground motion accelerometers. The resulting seismograms show complex S wave patterns. Nevertheless, visual correlations of the strong-ground-motion velocity and displacement time-histories clearly identify two significant wave pulses: a secondary S pulse (called S2) arriving 3–5 seconds after the initial S wave pulse (called S1). A plausible assumption is that these phases are generated at areas on the rupturing thrust fault that experienced especially large slip. Conventional travel-time computations, relating the relative arrival times between the onsets of the primary S1 and secondary S2 phases, yield a hypocenter of the initiation point, constrained to a independently etimated fault plane, of the secondary wave source (called H2) at 34.26°N, 118.54° W, with a depth of 14.1 km; the 68% confidence error in depth is 1.3 km. This location is about 6 km up-dip and north from the estimated hypocenter, on the fault plane of the initial principal seismic source (called H1). The seismic moment for both the initial H1 and secondary source H2 was estimated from the SH displacement pulse. Values averaged over eight stations were 8.61 ± 9.56 × 1024 dyne-cm and 2.49 ± 2.31 × 1025 dyne-cm respectively. Reasons why the sum of the two seismic moments is smaller than the total estimated seismic moment of 1.2 × 1026 dyne-cm for the Northridge earthquake are discussed. The location of the initiation point of a second source H2 in the Northridge thrust faulting is consistent with independent computations of the fault slip pattern. The estimated stress drop for the initial and secondary sources are 1 = 150 ± 15 bars and 2 = 110 ± 11 bars, respectively.  相似文献   

12.
    
The spatial distributions of severely damaged buildings (red-tagged) and of breaks in the water distribution system following the 1994 Northridge, California, earthquake (ML = 6·4) are investigated relative to the local characteristics of surficial geology. The pipe breaks are used as an indicator of nonlinear soil response, and the red-tagged buildings as indicator of severe shaking. The surficial geology is described by several generalized categories based on age, textural character and thickness of the near surface layer. Two regions are studied: the San Fernando Valley and Los Angeles-Santa Monica. The analysis shows that there is no simple correlation between damage patterns and surficial geology. Single family wood-frame buildings were damaged less when built on fine silt and clay (0–3 m thick) from the late Holocene.  相似文献   

13.
通过查阅大量的相关资料,总结了地震对市政管道产生的破坏,并提出了市政管道应采取的抗震措施。  相似文献   

14.
供水管网在地震时的可靠性评估方法   总被引:2,自引:0,他引:2  
本文提出了一种供水管网系统在地震作用时间的可靠性分析方法,开发出相应计算机应用软件并通过实例计算验证了该方法的可靠性和实用性。  相似文献   

15.
以宁蒗县1988年MS 5.5、2012年MS 5.7以及2022年MS 5.5地震为研究对象,以宁蒗地震灾区当年相关震害统计资料为基础,从人员伤亡、房屋破坏、经济损失3个主要方面,对3次地震震害特征进行对比分析。结果表明: 2012年MS 5.7地震造成的人员伤亡最为严重,此外震区房屋结构不断丰富,抗震性能不断增强,但土木结构房屋抗震性能较差,震灾经济损失逐渐减小,但民房经济损失占比逐年升高。根据分析以上结果提出“提高民众防震减灾意识,增强房屋抗震性能,积极响应政策号召”等建议和措施,为灾后重建以及城市规划发展提供借鉴。  相似文献   

16.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   

17.
阐述张家口市尚义M_S 4.0地震构造背景、地震活动特征,总结地震应急调查成果,介绍极震区震感现象和分布范围。通过对地震现场调查点和电话调查点的烈度评定,确定极震区的影响烈度为Ⅴ度,圈定地震等烈度分布区域,同时修正观测仪器震中位置。结合本次地震的宏观烈度分布、震源机制和震区卫星影像的线性构造解释等资料,讨论本次地震的孕震构造和发震断层。  相似文献   

18.
Following the 17 January 1994 Northridge, California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak ofcoccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted byinhaling airborne fungal spores. In the 8 weeks following the earthquake (24 Januarythrough 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal.Simi Valley, in easternmost Ventura County, had the highest attack rate in the county,and the attack rate decreased westward across the county. The temporal and spatial distribution of CM cases indicates that the outbreak resulted from inhalation of spore-contaminated dust generated by earthquake-triggered landslides. Canyons North East of Simi Valleyproduced many highly disrupted, dust-generating landslides during the earthquake andits aftershocks. Winds after the earthquake were from the North East, which transporteddust into Simi Valley and beyond to communities to the West. The three fatalities from the CM epidemic accounted for 4 percent of the total earthquake-related fatalities.  相似文献   

19.
2019 年7 月4—6 日位于美国南加州城市Ridgecrest附近地区,在不足两天的时间内接连发生了一系列地震,其中包括震级达MW6.4 和MW7.1 的强震.震后两天对震中区产生的地表破裂进行了实地地质调查和测量,发现两次地震分别产生了NW方向长度50 km和NE方向长度 10 km的两条破裂带.根据野外调查,N...  相似文献   

20.
On April 20, 2013, an earthquake with mag- nitude 7.0 occurred in the southwest of the Longmenshan fault system in and around Lushan County, Sichuan Province, China. This devastating earthquake killed hun- dreds of people, injured 10 thousand others, and collapsed countless buildings. In order to analyze the potential risk of this big earthquake, we calculate the co- and post-seismic surface deformation and gravity changes of this event. In this work, a multilayered crustal model is designed, and the elastic dislocation theory is utilized to calculate the co- and post-seismic deformations and gravity changes. During the process, a rupture model obtained by seismic waveform inversion (Liu et al. Sci China Earth Sci 56(7): 1187-1192, 2013) is applied. The time-dependent relaxation results show that the influences on Lushan and its surrounding areas caused by the Ms7.0 Lushan earthquake will last as long as 10 years. The maximum horizontal displacement, vertical uplift, and settlement are about 5 cm, 21.24 cm, and 0.16 m, respectively; the maximal positive and nega- tive values of gravity changes are 45 and -0.47 μGal, respectively. These results may be applied to evaluate the long-term potential risk caused by this earthquake and to provide necessary information for post-earthquake reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号