首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Arguments in favor of the cometary origin of the Tunguska meteorite are adduced along with reasons against the asteroidal hypothesis. A critical analysis is given for the hypotheses by Sekanina (1983) and Chyba et al. (1993). On the basis of the azimuth and inclination of the trajectory of the Tunguska body with plausible values of the geocentric velocity, the semimajor axis of the orbit and its inclination to the ecliptic plane are calculated for this body. It is noted that the theory of the disintegration of large bodies in the atmosphere put forward by Chyba et al. (1993) is crude. Applying more accurate theories (Grigoryan, 1979; Hills and Goda, 1993) as well as taking into account the realistic shape of the body yield for the cometary body lower disruption heights than obtained by Chyba et al. Numerical simulations carried out by Svettsov et al. agree well with the cometary hypothesis and the analytical calculations based on Grigoryan's theory. The asteroidal hypothesis is shown not to be tenable: the complete lack of stony fragments in the region of the catastrophe, cosmochemical data (in particular, the results of an isotope analysis), and some other information contradict this hypothesis. It is shown that stony fragments that would have originated in the explosive disruption of the Tunguska body would not be vaporized by the radiation of the vapor cloud nor as a result of their fall to the Earth's surface.  相似文献   

2.
The phenomenon of terminal thermal explosions of bolides is considered and mathematically modeled, using the mechanisms of ablation and fragmentation due to mechanical and thermal stresses. The definition and criterion of thermal explosions are given. An analytical solution is obtained for the model of ablating and mechanically fragmenting meteoroid motion in the atmosphere. Numerical calculations including the terminal stage of the motion are fulfilled for the Tunguska parameters. They demonstrated a very rapid energy loss, corresponding to the terminal flare and full mass loss, explaining the absence meteorites.  相似文献   

3.
Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.  相似文献   

4.
We have measured excesses of Pd, Rh, Ru, REE, Co, Sr, and Y in a peat column from the Northern peat bog of the 1908 Tunguska explosion site. Earlier, in this peat column the presence of an Ir anomaly at the event layers (30- depth) has been found (Planet Space Sci. 48 (1998) 179). In these layers, Pd, Rh, Ru, Co, Sr, and Y show pronounced anomalies of a factor 4-7 higher than the background value. In the event layers there are also good correlations between the siderophile platinum group elements (Pd, Rh, Ru) and Co, indicators of cosmic material, which imply they might have the same source, i.e. the Tunguska explosive body. The patterns of CI-chondrite-normalized REE in the event layers are much flatter than those in normal peat layers and different from those in the nearby traps. Furthermore, in these layers the patterns of CI-chondrite-normalized PGEs and the element ratios (e.g. C/Pd, C/Rh, and between some siderophile elements) give evidence that the Tunguska explosive body was more likely a comet, although we cannot exclude the possibility that the impactor could be a carbonaceous asteroid. We have estimated the total mass of a solid component of the explosive body up to 103-106 tons.  相似文献   

5.
Abstract— A critical survey is presented of all determinations of the azimuth and inclination of the Tunguska meteorite's trajectory based either on eyewitness testimonies or on the mathematical treatment of the forest-leveling field in the area of the catastrophe. The eyewitness testimonies collected in the neighborhood of the Nizhnyaya Tunguska River indicate the most probable azimuth of the trajectory projection to be 104° from the north to the east, which is close to the most recent azimuth estimate from the forest-leveling field, 99°. For the most part of the trajectory, its inclination could not exceed 15°. However, it is seen from aerodynamic calculations that the combined action of the gravity field and a nonzero aerodynamic lift could increase the inclination to 40° as the end of the trajectory was approached. Meteoroid orbits are calculated for a broad family of trajectories with azimuths ranging from 99° (Fast et al, 1976) to 137° (Krinov, 1949) and geocentric velocities ranging from 25 to 40 km/s. Orbits with large azimuth values (120° and larger) are shown to belong to the asteroidal type. They are succeeded by the orbits of short-period and long-period comets, whereas very small azimuth values and large geocentric velocities correspond to the region of hyperbolic orbits. Certain restrictions on the possible trajectory azimuths and geocentric velocities of the Tunguska body are imposed by this study.  相似文献   

6.
The approximate composition of the Tunguska meteorite remnants obtained by averaging the results of several measurements is presented. It is pointed out that the matter of the cosmic-body remnants was enriched with alkaline and alkaline-earth elements. The composition of the meteorite matter was extremely heterogeneous. The upper limit of the density of the Tunguska cosmic body has been estimated at 2.8 g/cm3. It is suggested that, due to interaction with the Earth’s atmosphere, the cosmic body disintegrated into fragments from 10?7 to 10?3 m in size, with the majority of the matter being ejected to the upper atmospheric layers. Calculations of the rate and the time of the sedimentation of particles in the atmosphere have shown that the change in atmosphere transparency is controlled by particles larger than 10?5 m in radius.  相似文献   

7.
Ten Sphagnum fuscum peat samples collected from different depths of a core including the layer affected by the 1908 Tunguska explosion in the Tunguska area of Central Siberia, Russia, were analyzed by ICP-MS to determine the concentrations of Pd, Rh, Ru, Co, REE, Y, Sr, and Sc. The analytical results indicate that the Pd and Rh concentrations in the event- and lower layers were 14.0–19.9, and 1.23–1.56 ppb, respectively, about 3–9 times and 3 times higher than the background values in the normal layers. In addition, the patterns of CI-chondrite-normalized REE in the event layers were much flatter than in the normal layers, and differed from those in the nearby traps. Hence, it can be inferred from the characteristics of the elemental geochemistry that the explosion was probably associated with extraterrestrial material, and which, most probably, was a small comet core the dust fraction of which was chemically similar to carbonaceous chondrites (CI). In terms of the Pd and REE excess fluxes in the explosion area, it can be estimated that the celestial body that exploded over Tunguska in 1908 weighed more than 106 t, corresponding to a radius of >60 m. If the celestial body was a comet, then its total mass was more than 2×107 t, and it had >160 m radius, and released an energy of >107 t TNT.  相似文献   

8.
Impacts of cosmic bodies (stony and comet-like) are considered that “burn out” (or, more strictly, totally evaporate) in the atmosphere, which do not form craters but cause fires and destruction on the Earth’s surface. The heights of fragmentation, total evaporation, and deceleration of stony and comet-like meteoroids of different sizes, initial velocities, and impact angles are found from numerical simulations. The possible consequences of such falls are considered. The possible parameters of the Tunguska cosmic body are estimated.  相似文献   

9.
A short overview of the studies of the authors and their colleagues performed over many years, which resulted in the discovery of traces of cometary matter in the peat at the epicenter of the Tunguska catastrophe in 1908, is given here. In the epicenter of the Tunguska cosmic body (TCB) explosion, the shifts in the isotopic composition of hydrogen and carbon relative to their values for the upper and lower layers of the same column were found in the catastrophic layers of peat grown up in 1908. These shifts cannot be attributed to any known terrestrial processes: the conservation of mineral and organic dust in peat, peat humification, the emission of hydrocarbon gases from the Earth, climate changes, and other physical and chemical processes. In the catastrophic layers of the control peat columns, the isotopic shifts are absent. The isotopic data agree well with the increased concentration of iridium and other platinum-group elements in the same peat layers, which is a reliable indicator of the presence of cosmic material in terrestrial objects. The cosmogenic character of the isotopic effects is confirmed by the presence of “dead” carbon (not containing radioactive 14C) in the catastrophic layers. To provide the shifts observed in the isotopic composition of carbon, cosmic carbon preserved in peat should be isotopically superheavy—from +50‰ to +60‰ according to calculations. Such isotopically heavy carbon is absent both on the Earth and in ordinary meteorites. It occurs only in individual mineral phases of CI carbonaceous chondrites, close to cometary dust in chemical composition, ratios of the content of iridium and other platinoids and rear-earth elements also points to the cometary nature of the TCB. In the near-catastrophic peat layers, the anomalous increase of the concentration of many volatiles was detected, which also suggests that the TCB was a cometary core. The studies of the content and the isotopic composition of nitrogen in the peat revealed traces of heavy acid rains induced by the flyby and explosion of the TCB.  相似文献   

10.
The Tunguska event on 30 June 1908 has been subjected to much speculation within different fields of research. Publication of the results of the 1961 expedition to the Tunguska area (Florensky, 1963) supports that a cometary impact caused the event. Based on this interpretation, calculations of the impactor energy release and explosion height have been reported by Ben-Menahem (1975), and velocity, mass, and density of the impactor by Petrov and Stulov (1975). Park (1978) and Turco et al., 1981, Turco et al., 1982, used these numbers to calculate a production of ca. 30 × 106 tons of NO during atmospheric transit. This paper presents a high-resolution study of nitrate concentration in the Greenland ice sheet in ca. 10 years covering the Tunguska event. No signs of excess nitrate are found in three ice cores from two different sites in Greenland in the years following the Tunguska event. By comparing these results with results for other aerosols generally found in the ice, the lack of excess NO3? following the Tunguska event can be interpreted as indicating that the impactor nitrate production calculated by Park (1978) and Turco et al., 1981, Turco et al., 1982 are 1–2 orders of magnitude too high. To explain this it is suggested, from other lines of reasoning, that the impactor density determined by Petrov and Stulov (1975) probably is too low.  相似文献   

11.
Abstract— We have determined the abundances of Ir and other elements by neutron activation analysis on annual dust samples from an ice core from Site B in the Crête region in central Greenland covering the years 1905–1914. Iridium was detected in all samples, but we found no excess Ir above the background in the years following the Tunguska event. The lack of an Ir anomaly in the years after the Tunguska impact combined with the knowledge of the energy released during the impact and our present knowledge about stratospheric transport implies either a very low Ir content of the impactor or an exceptionally high geocentric velocity for the impactor.  相似文献   

12.
When cosmic bodies of asteroidal and cometary origin, with a size from 20 to approximately 100 m, enter dense atmospheric layers, they are destroyed with a large probability under the action of aerodynamic forces and decelerated with the transfer of their energy to the air at heights from 20–30 to several kilometers. The forming shock wave reaches the Earth’s surface and can cause considerable damage at great distances from the entry path similar to the action of a high-altitude explosion. We have performed a numerical simulation of the disruption (with allowance for evaporation of fragments) and deceleration of meteoroids having the aforesaid dimensions and entering the Earth’s atmosphere at different angles and determined the height of the equivalent explosion point generating the same shock wave as the fall of a cosmic body with the given parameters. It turns out that this height does not depend on the velocity of the body and is approximately equal to the height at which this velocity is reduced by half. The obtained results were successfully approximated by a simple analytical formula allowing one to easily determine the height of an equivalent explosion depending on the dimensions of the body, its density, and angle of entry into the atmosphere. A comparison of the obtained results with well-known approximate analytical (pancake) models is presented and an application of the obtained formula to specific events, in particular, to the fall of the Chelyabinsk meteorite on February 15, 2013, and Tunguska event of 1908, is discussed.  相似文献   

13.
Abstract— We discuss possible evidence for a dilution of 14C caused by the Tunguska impact event, proposed by Rasmussen et al. (1999). The results presented in that paper and other available information do not support this hypothesis.  相似文献   

14.
Two peat columns from Tunguska (Siberia) were analysed for pollen, spores, charcoal, trace elements and γ-emitters in order to identify the fingerprints of the impact of a still unidentified cosmic body (TCB), which occurred in the summer of 1908, and the level of environmental pollution in a background area of central Siberia. Peat layers were subject to non-destructive γ-ray spectrometry to derive radiochronology by the excess 210Pb method. The age-to-depth relationship was crosschecked by using both 1963 horizon of 137Cs associated to maximum global fallout deposition and palynological data profiles. Vertical distributions of trace elements in the peat columns were obtained by PIXE multielemental analysis allowing determination of the levels of environmental contamination in a background region of the Siberian taiga.The association of heavy metals such as Ni, Co and Cu in the profiles suggests the connection of the area with mining and metal smelting activity in the north of the region through atmospheric circulation. As concerns global scale contamination, the inventory of the artificial radionuclide 137Cs (4.6 kBq m− 2) shows a value typical of remote slightly contaminated areas resulting from global scale redistribution of radioactive fallout from Cold War nuclear weapon testing. The atmospheric inventory of the natural radionuclide 210Pb, for which a mean annual flux of 200 Bq m− 2 yr− 1 has been calculated, is typical of continental regions.The influence of Tunguska Cosmic Body in the peat is recognizable by a large discontinuity in the palynological profile of the peat monolith at a depth coinciding with the 1908 layer as determined by the 210Pb technique, showing a large peak of total pollen counting attributed to the impact of the shockwave on the area in which huge tree stands were destroyed. Following the event, tree pollen concentration decreases abruptly showing the temporary inception of a mire environment with an increase of Sphagnum spore concentrations. Results of elemental analysis so far available do not show anomalies in the concentration profiles at depths coinciding with the Tunguska event layer indicating the need for pre-concentration technique enabling the detection of element associations typical of extraterrestrial materials.  相似文献   

15.
《Planetary and Space Science》1999,47(6-7):905-916
Method of a search for traces of Tunguska Cosmic Body (TCB) material using layer-by-layer analysis of the isotopic composition of light elements in peat has been offered. Four peat columns sampled at the explosion epicentre indicated significant carbon and hydrogen isotopic effects in its near catastrophic layers. The shifts, opposite in direction, for carbon (Δ13C reaches +4.3‰) and hydrogen (ΔD reaches −22‰) cannot be attributed to any known terrestrial reasons (fall-out of terrestrial dust and fire soot; emission from the Earth of oil–gas streams; climate changes, humification of peat, and so on). Moreover, the isotopic effects are clearly associated with the area and with the time of the 1908 event. They are absent in the uppermost and the lowest peat layers and also in the control peat columns sampled at the remote places. Since calculated δ13C value for an admixture of carbon (+51–64‰) is very high, these effects may not be explained by contamination of peat with material similar to ordinary chondrites or achondrites, too. Such heavy carbon occurs in the most primitive CI and CM types of carbonaceous chondrites. However, C/Ir ratio in a cosmic admixture is 10,000 times as many as in CI chondrites that points to cometary nature of the TCB. The isotopic effects are in agreement with the increase of the Ir content observed in peat, but, at the same time, small content of Ir points to the low content of dust in the Tunguska comet that sharply differs it from Halleys comet.  相似文献   

16.
17.
Disturbances in the Earths’s ionosphere and magnetosphere caused by impacts of small comets and asteroids (with diameters from 50–60 m to 1–2 km) are analyzed. Two-dimensional hydrodynamical computations of the passage of a cosmic body through the atmosphere with allowance for deceleration and destruction due to aerodynamic loading and formation of the wake behind the body are performed. The tenuous wake facilitates an upward ejection of the plume (heated air and ablation products of the cosmic body). Numerical simulations of the motion of the plume and of its interaction with the geomagnetic field are performed. It is shown that part of the plume moves at higher than escape velocity. The rising plume operates as an MHD generator. Field-aligned currents heat the ionosphere and change its conductivity. The estimated magnetic variations are on the order of those of typical magnetic storms (for bodies with sizes comparable to the Tunguska meteorite) and are even higher for cosmic bodies with diameters of 200–400 m. Excitation of MHD waves is demonstrated. These disturbances are capable of triggering precipitation of particles from radiation belts and exciting intense electromagnetic noise. Strong oscillations of conducting ionospheric layers propagate radially from the place of impact of the low-velocity part of the plume to large distances from the impact point. For a 1-km body the energy of the high-velocity plume is comparable to that of the Earths’s magnetic field. This causes extremely intense magnetospheric disturbances. However, even 200-to 400-m bodies whose high-velocity part of the plume has energies exceeding 0.4–3 Mt TNT—i.e., much lower than the initial kinetic energy of the intruding body—produce global ionospheric and magnetospheric disturbances.  相似文献   

18.
At the hundredth anniversary of the Tunguska event in Siberia it is appropriate to discuss measures to avoid such occurrences in the future. Recent discussions about detecting, tracking, cataloguing, and characterizing near-Earth objects (NEOs) center on objects larger than about 140 m in size. However, objects smaller than 100 m are more frequent and can cause significant regional destruction of civil infrastructures and population centers. The cosmic object responsible for the Tunguska event provides a graphic example: although it is thought to have been only about 50 to 60 m in size, it devastated an area of about 2000 km2. Ongoing surveys aimed at early detection of a potentially hazardous object (PHO: asteroid or comet nucleus that approaches the Earth’s orbit within 0.05 AU) are only a first step toward applying countermeasures to prevent an impact on Earth. Because “early” may mean only a few weeks or days in the case of a Tunguska-sized object or a longperiod comet, deflecting the object by changing its orbit is beyond the means of current technology, and destruction and dispersal of its fragments may be the only reasonable solution. Highly capable countermeasures- always at the ready—are essential to defending against an object with such short warning time, and therefore short reaction time between discovery and impending impact. We present an outline for a comprehensive plan for countermeasures that includes smaller (Tunguska-sized) objects and long-period comets, focuses on short warning times, uses non-nuclear methods (e.g., hyper-velocity impactor devices and conventional explosives) whenever possible, uses nuclear munitions only when needed, and launches from the ground. The plan calls for international collaboration for action against a truly global threat.  相似文献   

19.
This paper analyzes data on thermal explosions of large meteoroids in the earth’s atmosphere. The cumulative function of flux of space bodies is corrected with regard to the explosion height, which is determined, according to our approach, by maximum braking. As a result, the integral function of flux in the work [Brown, P., Spalding, R.E., ReVelle, D.O., et al., The Flux of Small Near-Earth Objects Colliding with the Earth, Nature, 2002, vol. 420, pp. 314–316] is consistent with the one we derived earlier. It is found that at least one phenomenon of those discussed in the paper by Brown et al. is a result of explosion of a comet nucleus fragment. It is shown that the Tunguska phenomenon cannot be explained within a monolithic body model.  相似文献   

20.
The Tunguska 1908 explosion's region as an international park of studies of the Ecological Consequences of Collisions of the Earth with the Solar System Small Bodies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号