首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Estimates of suspended sediment yield over the past 800 years have been derived from a whole-basin study of lake sediments in Llyn Geirionydd, North Wales. Magnetic and physical sediment properties were used to correlate a suite of cores to a master chronology based on 210Pb and 14C dates. The sources of sediment within the catchment were identified by comparing the magnetic and heavy metal properties of sediments, soils, and stream sediments. Mean suspended sediment yields range from 6 to 18 t km?2 yr?1 with high yields in the periods 1765-1830 and 1903-1985 corresponding to mining activities in the catchment. The impact of earlier deforestation, agricultural expansion, or climatic change on sediment yields is low, although there is evidence that agricultural activities increased levels of peak stream discharge. Afforestation in the 20th century does not appear to have significantly increased sediment yield. Sediment sources have remained fairly constant through time; they appear to be widespread and dominated by stream channel sides rather than point sources, except during the mining phases when spoil material has dominated the sediment load. Sediment loads to the lake today are still dominated by sediment derived from unvegetated spoil heaps.  相似文献   

4.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Streams can be classified as stable or unstable, depending on the stage of channel evolution. Many streams of the southern Piedmont in United States have high sediment loads and are listed as impaired under the total maximum daily load (TMDL) program and may be unstable. It is not clear as to what the target (reference) load or remediation measures should be for unstable streams. The objective of this study was to determine the relative channel stability for a typical southern Piedmont stream using rapid geomorphic assessments (RGAs) and sediment yield analysis. The results were supported through a sediment fingerprinting analysis. RGAs were performed along 52 reaches on the North Fork Broad River (NFBR) main stem and two tributaries. Annual sediment yields were calculated and compared with yields in the southern Piedmont for stable streams that are resilient to degradation or aggradation and unstable streams that are susceptible to such disturbances. Majority of the NFBR main stem was found to be unstable with signs of geomorphic instability in the form of degradation and aggradation. The estimated average annual sediment yield was 0·78 T ha?1 year?1. By comparison, the median annual yield is 0·20 T ha?1 year?1 for stable streams and 0·48 T ha?1 year?1 for unstable streams in the Piedmont ecoregion with comparable drainage basin size. We conclude that the NFBR is in an unstable stage of channel evolution. Sediment fingerprinting proved that majority of the stream‐suspended sediment emanated from eroding stream channels. The methods outlined in this study have implications for the reference condition and remediation efforts related to stream turbidity and stream channel restoration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In response to the potential shortcomings of single-technique strategies in the investigation of erosion and sedimentation, a combined magnetic and radiometric (13Cs and 210Pb) approach has been undertaken in the upland, watershed-lake system of Howden Reservoir, Derbyshire. By combining these techniques, some assessment of sediment sources and the erosion status of the catchment has been achieved. Alone, each approach would have been unable to determine unequivocally sediment provenance. Furthermore, the parallel use of these measurements has highlighted limitations and/or uncertainties in both the magnetic and 137Cs techniques. These problems reflect the particular soil characteristics and drainage conditions of this upland catchment. Despite the documented severity of peat erosion in the region, Howden Reservoir has a mixture of sediment sources and a relatively moderate rate of sedimentation. Sediment yields (total 127·7 t km?2 yr?1 including organic fraction 31·3 t km?2 yr?1) are, however, higher than in other British upland areas.  相似文献   

9.
《水文科学杂志》2013,58(4):619-635
Abstract

The drawdown of Crombie Reservoir in November 2001 afforded the opportunity to examine the exposed sediments trapped since impoundment in 1868. Direct measurements of infill depth enabled an isopachyte map to be produced. Gravimetric conversion using measured bulk densities and a trap efficiency term indicated a long-term catchment sediment yield of 59.1 t km?2 year?1. Core stratigraphy analysis indicated that sediments were dark brown/black cohesive silty-muds with multiple sandy sub-units, representing a combination of discrete flood events and previous drawdown surfaces. Dating, constrained by mineral magnetic and 137Cs analysis, indicated that sedimentation rates have varied from 0.2 to 0.8 g cm?2 year?1, corresponding to a four-fold variation in catchment sediment yield (approximately 20–93 t km?2 year?1), most likely controlled by extensive conversion of moorland to woodland, and post-World War II agricultural expansion. The Crombie investigation is combined with other reservoir sedimentation surveys within the Midland Valley of Scotland. Area-specific sediment yields (t km?2 year?1) evidence a weak, though statistically significant (p > 0.05), positive correlation with catchment area (km2). The increase in area-specific yield with catchment area contradicts the decline, which is generally expected, and is taken to reflect the significance of channel erosion within water supply basins featuring mainly natural and semi-natural vegetation cover and low-intensity land management practices. With stable slopes channel erosion dominates and area-specific sediment yield increases downstream due to greater entrainment and transport potential. The high degree of scatter in the Midland Valley database reflects significant variations in the extent of land-use change and the local importance of agricultural improvements and afforestation practices.  相似文献   

10.
There is very thin soil layer in karst rocky desertification areas in Southwest China,sediment deposition and sediment yield in the karst area affects the development of vegetation greatly.In the present study,the 137Cs technique was used to assess the rate of sediment deposition and sediment yield in a small karst catchment.The 137Cs inventory within the depression varied between 800 m-2 and 2,200 Bq m-2,with the mean value of 1,500.1 Bq m-2.The 137Cs reference inventory at a nearby reference site was 805.9 Bq m-2.It could be inferred to that sediment deposition had occurred in the catchment.The mean depth of sediments deposition in the depression was 6 cm and the deposition rate was approximately 0.13 cm yr-1.The analysis of the topographic characteristics of the catchment revealed that the sediment deposition occurred mainly at the lower part of the small catchment.Although,there was a sinkhole in the depression,little sediment had drained out with runoff through the sinkhole,because the local people built ridges around the sinkholes for storing water.According to this,sediment yield rate in the small catchment was estimated to be approximately 19.25 to 27.5 t km-2 yr-1,and the extremely low sediment yield was maybe the main obstacle to vegetation restoration in karst rocky desertification areas.  相似文献   

11.
Abstract

The hydrology and sediment yield of the relatively undisturbed Sungai Air Terjun catchment on the forested Penang Hill was investigated in 1993–1994. Baseflow accounted for 87.3% of the total runoff, while quickflow comprised 12.7%. The suspended sediment concentration varied from an average concentration of 11.36 mg 1?1 (range: 0.5–60.5 mg 1?1) during low flow to an average concentration of 125.5 mg 1?1 (range: 11–668.7 mg 1?1) during storms. Suspended sediment transport during storms accounted for as little as 0.69% of the total sediment transport in the driest month, but as much as 52.35% in the wettest month, November 1993. The frequent high-intensity storms on the hill account for the removal of sediment from the hill. Natural disturbances, such as both landslides and human interference, affect the availability of sediment and thus influence variations in sediment output.  相似文献   

12.
Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant‐y‐Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in‐line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0·150 mg l?1) and Cu (0·038 mg l?1) but on the falling limb for Zn (1·660 mg l?1) and Cd (0·006 mg l?1) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three‐dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment yield in the San Pedro Lake watershed, inferred from sedimentation in the lake, can be related to land use changes shown on aerial photographs taken during the period 1943–1994. In this watershed, which covers 4·5 km2 of mountainous terrain in San Pedro County, central Chile, the area of native forest species decreased from 70 per cent in 1943 to 13 per cent in 1994. During this same period, the area of pine plantations increased from 4 to 46 per cent. To study effects of these changes, we took a core from the centre of the lake and estimated sedimentation rates by 210Pb dating, which we checked with 137Cs and pine pollen. The results show that sedimentation rate ranged from 5 mg cm−2 a−1 in the late 1800s to 60 mg cm−2 a−1 in the late 1960s. These rates, together with assumptions about the production and delivery of the sediment, give corresponding figures for sediment yields with maximum values close to 1 t ha−1 a−1. Sediment yield between 1955 and 1994 closely tracks the total land use change that can be detected, irrespective of land use type, on sets of aerial photographs taken four to 18 years apart. However, this measure of land use change, while convenient and successful as a predictor of historical erosion, may be unreliable because it probably excludes many changes that occurred in long intervals between successive photographs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Lake sedimentation has a fundamental impact on lake lifetime. In this paper, we show how sensitive calculation of the latter is to the quality of data available and assumptions made during analysis. Based on the collection of a large new dataset, we quantify the sediment masses (1) mobilized on the hillslopes draining towards Lake Tana (Ethiopia), (2) stored in the floodplains, (3) transported into the lake, (4) deposited in the lake and (5) delivered out from the lake so as to establish a sediment budget. In 2012–2013, suspended sediment concentration (SSC) and discharge measurements were made at 13 monitoring stations, including two lake outlets. Altogether, 4635 SSC samples were collected and sediment rating curves that account for land cover conditions and rainfall seasonality were established for the 11 river stations, and mean monthly SSC was calculated for the outlets. Effects of the floodplain on rivers' sediment yield (SY) were investigated using measurements at both sides of the floodplains. SY from ungauged rivers was assessed using a model that includes catchment area and rainfall, whereas bedload and direct sediment input from lake shores were estimated. As a result, the gross annual SY was c. 39.55 (± 0.15) Mt, dominantly from Gilgel Abay and Gumara Rivers. The 2.57 (± 0.17) Mt sediment deposited in floodplains indicate that the floodplains serve as an important sediment sink. Moreover, annually c. 1.09 Mt of sediment leaves the lake through the two outlets. Annual sediment deposition in the lake was c. 36.97 (± 0.22) Mt and organic matter accumulation was 2.15 Mt, with a mean sediment trapping efficiency of 97%. Furthermore, SSC and SY are generally higher at the beginning of the rainy season because soils in cultivated fields are bare and loose due to frequent ploughing and seedbed preparation. Later in the season, increased crop and vegetation cover lead to a decrease in sediment production. Based on the established sediment budget with average rainfall, the lifetime of Lake Tana was estimated as 764 to 1032 years, which is shorter than what was anticipated in earlier studies. The sedimentation rate of Lake Tana (11.7 ± 0.1 kg m?2 yr?1) is in line with the sedimentation rates of larger lakes in the world, like Lake Dongting and Lake Kivu. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Event sediment transport and yield were studied for 45 events in the upstream part of the 260 km2 agricultural Koga catchment that drains to an irrigation reservoir. Discharge and turbidity data were collected over a period of more than a year, accompanied by grab sampling. Turbidity was very well correlated with the sediment concentrations from the samples (r = 0.99), which allowed us to estimate the temporal patterns of sediment concentrations within events. The hysteresis patterns between discharge and sediment concentrations were analysed to provide insight into the different sediment sources. Anticlockwise patterns are the dominant hysteresis patterns in the area, suggesting smaller contributions of suspended sediment from the river channels than from the hillslopes and agricultural areas. Complicated types of hysteresis patterns were mostly observed for long events with multiple peaks. For a given discharge, sediment yields in August and September, when the catchment was almost completely covered with vegetation, were much smaller than during the rest of the rainy season. The hysteresis patterns and timing suggest that the sediment availability from the agricultural areas and hillslopes affects sediment yields more strongly than does peak discharge. Two distinct types of sediment rating curves were observed for the season when the agricultural land was covered with vegetation and when it was not, indicating the dominating contribution of land use/cover to sediment yields in the catchment. The rate of suspended sediment transport in the area was estimated as 25.6 t year?1 ha?1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The relationship of hillslope erosion rates and sediment yield is often poorly defined because of short periods of measurement and inherent spatial and temporal variability in erosion processes. In landscapes containing hillslopes crenulated by alternating topographic noses and hollows, estimates of local hillslope erosion rates averaged over long time periods can be obtained by analysing colluvial deposits in the hollows. Hollows act as local traps for a portion of the colluvium transported down hillslopes, and erosion rates can be calculated using the age and size of the deposits and the size of the contributing source area. Analysis of colluvial deposits in nine Oregon Coast Range hollows has yielded average colluvial transport rates into the hollows of about 35cm3cm?1yr?1 and average bedrock lowering rates of about 0.07 mm yr?1 for the last 4000 to 15000 yr. These rates are consistent with maximum bedrock exfoliation rates of about 0.09 mm yr?1 calculated from six of the hollows, supporting the interpretation that exfoliation rates limit erosion rates on these slopes. Sediment yield measurements from nine Coast Range streams provide similar basin-wide denudation rates of between 0.05 and 0.08mm yr?1, suggesting an approximate steady-state between sediment production on hillslopes and sediment yield. In addition, modern sediment yields are similar in basins varying in size from 1 to 1500 km2, suggesting that erosion rates are spatially uniform and providing additional evidence for an approximate equilibrium in the landscape.  相似文献   

19.
This paper presents the result of measurements of floodplain sedimentation using sediment traps. The study was carried out on two embanked floodplains along the Rivers Rhine and Meuse in The Netherlands during a 3 day flood in January 1993. Raster maps of sediment accumulation were made by interpolating the measurements from the traps using block kriging. The sediment maps show clear patterns in sediment accumulation, together with the estimated interpolation errors. Average sediment accumulation ranges between 0·57 and 1·0 kg m?2. High sediment accumulation is found on the levees (4 kg m?2 or more) and on low lying areas (1·6 kg m?2); sediment accumulation decreases with distance from the main channel. The sedimentation patterns are related to floodplain topography and sediment transporting mechanisms. Sediment transport by turbulent diffusion as well as by convection can be recognized. Also, flood duration and the process of sediment settling out in ponding water in closed depressions are important. The applied method allows comparison of the results with raster-based sedimentation models.  相似文献   

20.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号