首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a constructed wetland for wastewater treatment was examined for four months (December 1995 to March 1996). The study area, hereby referred to as the Splash wetland, is approximately 0·5 ha, and is located in the southern part of Nairobi city. Splash wetland continuously receives domestic sewage from two busy restaurants. Treated wastewater is recycled for re‐use for various purposes in the restaurants. Both wet and dry season data were analysed with a view of determining the impact of seasonal variation on the system performance. The physical and chemical properties of water were measured at a common intake and at series of seven other points established along the wetland gradient and at the outlet where the water is collected and pumped for re‐use at the restaurants. The physico‐chemical characteristics of the wastewater changed significantly as the wastewater flowed through the respective wetland cells. A comparison of wastewater influent versus the effluent from the wetland revealed the system's apparent success in water treatment, especially in pH modification, removal of suspended solids, organic load and nutrients mean influent pH = 5·7 ± 0·5, mean effluent pH 7·7 ± 0·3; mean influent BOD5 = 1603·0 ± 397·6 mg/l, mean effluent BOD5 = 15·1 ± 2·5 mg/l; mean influent COD = 3749·8 ± 206·8 mg/l, mean effluent COD = 95·6 ± 7·2 mg/l; mean influent TSS = 195·4 ± 58·7 mg/l, mean effluent TSS = 4·7 ± 1·9 mg/l. As the wastewater flowed through the wetland system dissolved free and saline ammonia, NH4+, decreased from 14·6 ± 4·1 mg/l to undetectable levels at the outlet. Dissolved oxygen increased progressively through the wetland system. Analysis of the data available did not reveal temporal variation in the system's performance. However, significant spatial variation was evident as the wetland removed most of the common pollutants and considerably improved the quality of the water, making it safe for re‐use at the restaurants. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Soil gas sampling for 1,4‐dioxane at elevated soil temperatures, such as those experienced during in‐situ thermal treatment, has the potential to yield low results due to condensation of water vapor in the ambient temperature sampling vessel and the partitioning of 1,4‐dioxane into that condensate. A simple vapor/condensate sampling apparatus was developed to collect both condensate and vapor samples to allow for determination of a reconstituted effective soil gas concentration for 1,4‐dioxane. Results using the vapor/condensate sampling apparatus during a heated air injection SVE field demonstration are presented, along with those of a comparable laboratory system. Substantial 1,4‐dioxane mass was found in the condensate in both the lab and field (as high as ~50% in field). As soil temperatures increased, less 1,4‐dioxane mass was detected in field condensate samples than expected based on laboratory experiments. Extraction well effluent sampling at the wellhead by direct vapor canister sampling provided erratic results (several biased low by a factor of 5 or more) compared to those of the vapor/condensate apparatus. Direct vapor canister sampling of extraction well effluent after the air‐water separator, however, provided results reasonably comparable (within 35%) to those using the vapor/condensate apparatus at the wellhead. Soil gas sampling at elevated temperatures using the vapor/condensate apparatus alleviates potential low sampling bias due to condensation.  相似文献   

3.
An investigation of elevated concentrations of nickel and chromium in certain ground water samples collected at Williams Air Force Base (AFB) indicated that type 304 stainless steel well materials are the source. Chloride in the ground water has apparently caused crevice corrosion of the stainless steel well screens installed during site characterization. An evaluation of site geochemistry suggested that chromium released from the well screen would precipitate, while nickel would remain dissolved. Thus, low-flow purging and sampling significantly reduces the chromium found in the ground water samples because such sampling minimizes the collection of artificially entrained particulates. In contrast to chromium, nickel concentrations did not decrease during low-flow purging and sampling, indicating that it is dissolved. Nickel and chromium concentrations are both low following high-volume purging when turbidity levels are stabilized below 10 nephelometric turbidity units prior to sampling. In the latter case, chromium concentration is low because particulate collection is minimized, and nickel concentration is low because of increased dilution. Based on these results, it is recommended that elevated levels of nickel and chromium in ground water samples collected from stainless steel monitoring wells be carefully evaluated, because well materials may be the source. In addition, although low-volume purging is increasingly becoming the sampling method of choice, high-volume purging may be a useful means of determining whether the well materials influence nickel and chromium concentrations.  相似文献   

4.
A programme to determine the immediate impact of a new nickel refinery on sediment metal levels in Halifax Bay, North Queensland was begun in May, 1975. The results indicate that within three weeks of the initiation of continuous refinery discharge to the Bay, area levels of at least one element (cobalt) had been significantly increased. In addition, samples taken from nearshore river mouth stations located near the plant also showed relatively high levels of nickel which may not be attributable to the plant's effluent discharge. The field data together with laboratory experiments suggest that future levels of cobalt, nickel and iron may be expected to increase significantly in Halifax Bay as a direct result of the refinery.  相似文献   

5.
One of the most important problems arising from landfilling solid wastes is the leachate which contains high amount of pollution. Discharge of leachate without treatment causes negative effects on environmental and public health. In this study, parameters of chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH4‐N), and total phosphorus (TP) were examined in the samples taken from the influent and effluent of leachate treatment plant, where Odayeri landfill leachate is treated. Obtained results showed that the treatment plant, which consisted of preanoxic biological treatment system, ultrafiltration (UF) and nanofiltration (NF) units were operating with high efficiency. Among the examined parameters during study, COD, TN, NH4‐N, and TP were found to be treated at the rate of 99, 94.5, 99, and 93.8%, respectively. Landfilling is increasing rapidly in the world and this consequently brings the need of leachate treatment facilities. Therefore, this study is considered to be a guide for construction and operation stages of proposed new treatment plants.  相似文献   

6.
Improper disposal of wastewater is an important source of groundwater contamination, as it poses serious threats to the environment and human health. In this case study, 18 groundwater and 3 sewage effluent samples were collected from the area adjacent to a wastewater treatment plant in Sohag, Egypt. These samples were subjected to detailed chemical and bacteriological analyses to quantify the potential impact of sewage effluent on the groundwater quality using geochemical indicators. The groundwater aquifer in the study area is represented by the highly permeable Qena Sands that are composed of sands and gravels. The bacteriological analyses indicated the presence of fecal coliform in groundwater at wells nearby the wastewater ponds and farm lands. NH4 concentration of the contaminated groundwater samples ranged from 0.36 to 5.70 mg/L (78% of the samples > 1.20 mg/L) and the NH4 in the non‐impacted samples ranged from 0.40 to 2.23 mg/L (22% > 1.20 mg/L). Variations in NH4 concentrations are due to the transformation processes occurring in the aquifer. The groundwater samples were categorized based on the Na/K ratio into two classes. The first class shows the Na/K ratios vary from 2.52 to 12.19 for sewage effluent and contaminated samples, while in the second class they range from 12.85 to 31.60 for non‐impacted samples. As a result, the Na/K ratio in combination with other chemical and microbiological indicators is a useful screening tool for assessing possible sewage influence on shallow groundwater from shallow wells.  相似文献   

7.
Study of the Biological Degradation of Polycyclic Aromatic Hydrocarbons in a Laboratory-scale Plant A one-stage laboratory-scale wastewater treatment plant composed of a bubble column reactor with sedimentor and sludge recycle is fed with an oil/water emulsion from a contaminated site. The oil phase is highly contaminated with polycyclic aromatic hydrocarbons (PAH). The samples are taken regularly at defined points of the treatment plant (influent, reactor, return sludge, effluent). The analysis of PAH is performed by HPLC. We can show that all analysed PAH including the poorly degradable carcinogenic substances such as benzo[a]pyrene are biologically transformed. Additional measurements of the toxic and mutagenic potential of the wastewater show that in the laboratory-scale plant full removal of the carcinogenic potential is not achieved. This is due to the fact that during the biological transformation of higher condensated PAH mutagenic dead-end metabolites are produced.  相似文献   

8.
Continuous flow centrifugation (CFC) is a well‐established technique used in natural surface water studies to collect large amounts of suspended solids, thus allowing a broad spectrum of measurements. However, a potential contamination or changes in the particle size distribution during the centrifugation may restrain the use of CFC effluents for element analysis in the colloidal and dissolved fractions. In this paper we evaluate the possibility of using the effluent of a Westfalia centrifuge (type KA2‐06‐075, 9700 rpm) for such analysis. This evaluation is based on two laboratory experiments with deionized and tap water and two field experiments in rivers. Elemental concentration changes across the CFC were assessed from the CFC influent and effluent after a filtration at 0·45 µm. Significant increases were found, mainly in the field experiments at a high suspended solids level and a slightly acid pH. A hypothesis was made on the origin of these increases as a superposition of a centrifuge intrinsic contamination and a particle fragmentation effect. A numerical model based on elemental concentration measurements (inductively coupled plasma mass spectrometry) gave a particle fragmentation level of 0·55% (mass percentage of particles broken up into smaller fragments during centrifugation). In another experiment, a direct particle counting (single particle counter) shows an excess of particles smaller than 500 nm in the CFC effluent, corresponding to a fragmentation level of 0·11%. In consequence, the use of CFC effluent for element analysis is possible in low‐turbidity river or lake waters, but should be carefully considered in waters with high suspended matter contents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Caffeine in Boston Harbor seawater   总被引:1,自引:0,他引:1  
Caffeine has been detected in Boston Harbor seawater with concentrations ranging from 140 to 1600 ng l(-1), and in Massachusetts Bay seawater at concentrations from 5.2 to 71 ng l(-1). Sources of caffeine appear to be anthropogenic with higher concentrations in the seawater of Boston's inner harbor and in freshwater sources to the harbor. Charles River water and Deer Island sewage treatment plant effluent, the two major sources of freshwater to the harbor, contained 370 and 6700 ng l(-1) of caffeine, respectively, in 1998. Sewage influent and effluent concentrations appear to be consistent with consumption estimates of caffeinated beverages for the Boston area and total organic carbon removal targets for treated sewage. Caffeine was inversely correlated to salinity in a transect from the mouth of Boston Harbor to Stellwagen Basin, indicating it may be a useful chemical tracer of anthropogenic inputs to marine systems.  相似文献   

10.
In four tropical water works there are carried out investigations on the floc rising occurring during the day-hours, and especially in the hot season, in the flocculators. This phenomenon is caused by the great heating of the raw water during the day-hours, due to which between 10.00 a. m. and 10.00 p. m. a temperature difference up to 3.7 K between the influent and the effluent of the flocculators occurs during a retention period of 3.5… 5 h within the flocculators. Even temperature differences of only 1 K result in floc rising, reducing the filter run by four to seven hours. Oversaturation of the raw water with oxygen by the photosynthetic oxygen production constitutes an additional cause. As a measure against the rising and passing-on of flocs we recommend the aeration of the water at the raw water intake point, to prevent a thermal stratification during the day-hours and at the same time to remove the perhaps given oxygen oversaturation.  相似文献   

11.
Removal of natural free estrogens and estrogen conjugates in a municipal wastewater treatment plant (WWTP) was investigated and analyzed by GC‐MS, in which estrogen conjugates were first transformed to their corresponding free estrogens with an acid solvolysis procedure before their analysis. Natural free estrogens, E1‐3‐sulfate (E1‐3S), and E3‐3‐sulfate (E3‐3S) were detected with high concentrations in both the influent and effluent of the primary settling tank (PS), while no estrogen glucuronides were detected in any of the monitored wastewater samples. Regarding their removal efficiencies, all were almost completely removed, except for E1 with only a minor decrease. The estrogenic/androgenic removal of the same WWTP was also evaluated with estrogen receptor (androgen receptor) (ER (AR))‐binding assays, in which the removal efficiencies for E2 equivalents (EEQ) or testosterone equivalents (TEQ) were 68.5 and 72.2%. In addition, the chemically calculated EEQ from natural estrogens were about 20.6–39.3% that of the ER‐binding assay, in which E3 contributed the biggest proportion in both the influent and PS, while the calculated value of E1 increased from only 6.7% in the influent to as high as 20.6% in the effluent.  相似文献   

12.
Freeze‐coring and bulk sampling are routine methods used to sample subsurface spawning gravel under shallow water. Both methods have limitations. Freeze‐coring is not believed to representatively sample coarse grain sizes and the sample volumes are relatively small. Conversely, when bulk sampling, even within an enclosure, some fine sediment is suspended and washed away from the sample. This paper assesses the biases in sampling performance between the two methods and determines whether the loss of fines that occurs when bulk sampling could be predicted and thus corrected for. At six riffles the spawning substrate was sampled under approximately 50 cm of water with a bulk sample and three adjacent freeze‐cores. For each riffle, data from the two samples were combined using the method of Fripp and Diplas (1993) and the resultant composite sample was compared with the original freeze‐core and bulk samples to assess the relative precision and biases of the two techniques. On average, the D50 of the bulk samples was 4 mm larger and a one‐third loss of the <2 mm fraction occurred compared with the composite samples. In contrast, freeze‐core samples contain on average 32% more sediment >16 mm compared with composite samples. Based on six samples, taken from six riffles, the amount of sediment finer than 0·5 mm lost using our bulk sampling technique with an enclosure appears to be predictable and correctable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Kim E  Jun YR  Jo HJ  Shim SB  Jung J 《Marine pollution bulletin》2008,57(6-12):637-644
Because of complexity and diversity of toxicants in effluent, chemical analysis alone gives very limited information on identifying toxic chemicals to test organisms. Toxicity identification evaluation (TIE) techniques have been widely used to identify toxicants in various samples including industrial wastewater as well as natural waters. In response to new regulation for effluent discharge in Korea, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels in industrial effluents. This work was a preliminary study examining toxicity levels in effluent from one metal plating factory using Daphnia magna (48 h immobility) and identifying toxicity-causing substances. Toxicity tests showed variability on different sampling occasions and the results of TIE methods indicated that both organic compounds and metals contributed to the observed toxicity in metal plating effluent. Further studies are necessary to help reduce effluent toxicity especially from direct dischargers, who will have to comply with the new regulation.  相似文献   

14.
A solid‐phase extraction (SPE)‐gas chromatography (GC)‐mass spectrometry (MS) analytical method was developed for the simultaneous analysis of natural free estrogens and their conjugates in wastewater samples. Natural free estrogens and their conjugates in wastewater were successfully separated by the oasis hydrophilic‐lipophilic balance solid phase extraction (Oasis HLB SPE) method, and the conjugates were initially enzyme hydrolyzed by β‐glucuronidase or arylsulfatase from Helix pomatia prior to derivatization. N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) plus 1% tert‐butyldimetheylchlorosilane (TBDMCS) was chosen as the derivatization reagent, and the most appropriate conditions of derivatization were determined to be at 95°C for 90 min. The recovery ratios of nine target chemicals were determined by spiking them in 1 L of ultra‐purified water or the influent of a wastewater treatment plant (WWTP). The recovery ratios of six out of nine for the analytes ranged from 73.3–114.9% with relative standard deviations (RSD) from 1.6–19.9%. The established method was successfully applied to environmental wastewater samples which were collected from one municipal wastewater treatment plant (WWTP) in Osaka, Japan, for the determination of natural free estrogens and their conjugates. In the influent sample, E1, E2, E1‐3S, E3‐3S, and E1‐3G were detected at concentrations of 16.6, 9.6, 8.2, 21.9, and 3.2 ng L–1, respectively. However, only E1 was detected at a high concentration of 44 ng L–1 in the effluent sample, suggesting that it is the dominant natural free estrogen in the effluent.  相似文献   

15.
A comparison involving both field and laboratory trials was performed to evaluate the utility of two continuous-flow centrifuges and a tangential-flow filtration system for dewatering suspended sediments for subsequent trace element analysis. Although recovery efficiencies for the various devices differ, the analytical results from the separated suspended sediments indicate that any of the tested units can be used effectively and precisely for dewatering. Further, the three devices appear to concentrate and dewater suspended sediments in such a manner as to be equivalent to that which could be obtained by in-line filtration. Only the tangential-flow filtration system appears capable of providing both a dewatered sediment sample and a potentially usable effluent, which can be analysed for dissolved trace elements. The continuous-flow centrifuges can process whole water at an influent feed rate of 41 per minute; however, when suspended sediment concentrations are low (<30mg?1), when small volumes of whole water are to be processed (30 to 401), or when suspended sediment mean grain size is very fine (<10 μm), influent feed rates of 21 per minute may be more efficient. Tangential-flow filtration can be used to process samples at the rate of 11 per minute.  相似文献   

16.
Controls of Wellbore Flow Regimes on Pump Effluent Composition   总被引:1,自引:0,他引:1  
Where well water and formation water are compositionally different or heterogeneous, pump effluent composition will vary due to partial mixing and transport induced by pumping. Investigating influences of purging and sampling methodology on composition variability requires quantification of wellbore flow regimes and mixing. As a basis for this quantification, analytical models simulating Poiseuille flow were developed to calculate flow paths and travel times. Finite element modeling was used to incorporate influences of mixing. Parabolic velocity distributions within the screened interval accelerate with cumulative inflow approaching the pump intake while an annulus of inflowing formation water contracts uniformly to displace an axial cylinder of pre‐pumping well water as pumping proceeds. Increased dispersive mixing forms a more diffuse formation water annulus and the contribution of formation water to pump effluent increases more rapidly. Models incorporating viscous flow and diffusion scale mixing show that initially pump effluent is predominantly pre‐pumping well water and compositions vary most rapidly. After two screen volumes of pumping, 94% of pump effluent is inflowing formation water. Where the composition of formation water and pre‐pumping well water are likely to be similar, pump effluent compositions will not vary significantly and may be collected during early purging or with passive sampling. However, where these compositions are expected to be considerably different or heterogeneous, compositions would be most variable during early pumping, that is, when samples are collected during low‐flow sampling. Purging of two screen volumes would be required to stabilize the content and collect a sample consisting of 94% formation water.  相似文献   

17.
Pesticides are used extensively in the finfish aquaculture industry to control sea lice infestations on farmed salmon. The most prevalent method of use is to enclose a net pen with an impervious tarpaulin and mix a pesticide solution within that enclosure. After treatment for short periods (1 h) the pesticide solution is released to the environment. Concerns have been raised that there is a potential risk to non-target aquatic organisms from those releases. The fate of dispersing pesticide solutions was measured after six simulated treatments in the Lower Bay of Fundy, New Brunswick. Three simulated treatments were done with azamethiphos and three with cypermethrin. Rhodamine dye was added to all pesticide solutions in order to facilitate tracking of the dispersing plume through real-time measurements of dye concentrations by a flow-through fluorometer coupled with a differential global positioning system (DGPS). Water samples were obtained from within the plumes at various times after release and analysed for pesticide content and toxicity to a benthic amphipod Eohaustorius estuaris. Dye concentrations were detectable for time periods after release which varied from 2 to 5.5 h. Distances travelled by the dye patches ranged from 900 to 3000 m and the dye concentrations at the final sampling period were generally 1/200-1/3000 the pre-release concentrations and cypermethrin concentrations were generally 1/1000-1/2000 the pre-release concentrations. Cypermethrin concentrations in water samples were closely correlated with dye concentrations, indicating that dye analyses were an accurate surrogate for cypermethrin concentrations. Most samples taken after the releases of azamethiphos were not toxic to test organisms in 48 h exposures and none were beyond 20 min post-release. By contrast, almost all samples taken after the release of cypermethrin, even up to 5-h post-release, were toxic. Data indicate the potential to cause toxic effects over areas of hectares from a single release of cypermethrin.  相似文献   

18.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

19.
This study investigates the applicability of selected pharmaceutical compounds (e.g. sulfamethoxazole, carbamazepine, ibuprofen) as anthropogenic indicators for the interaction of surface water and groundwater in the hyporheic zone of an alluvial stream. Differences in transport behaviour and the resulting distribution of the pharmaceuticals in the riverine groundwater were evaluated. The investigated field site in the Grand Duchy of Luxembourg, Europe is represented by low permeable sediments and confined aquifer conditions. Water samples from single‐screen and multilevel observation wells installed in the riverbank at the field site were taken and analysed for selected pharmaceuticals and major ions for a period of 6 months. Surface water and groundwater levels were recorded to detect effluent and influent aquifer conditions. Nearly all pharmaceuticals that were detected in the stream were also found in the riverine groundwater. However, concentrations were significantly lower in groundwater than in surface water. A classification into mobile and sorbing/degradable pharmaceuticals based on their transport relevant properties was made and verified by the field data. Gradients with depth for some of these pharmaceuticals were documented and a more detailed understanding of the system stream/riverbank was obtained. It was demonstrated that the selected pharmaceutical compounds can be used as anthropogenic indicators at the investigated field site. However, not all compounds seem to be suitable indicators as their transport behaviour is not fully understood. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《Marine pollution bulletin》2009,58(6-12):637-644
Because of complexity and diversity of toxicants in effluent, chemical analysis alone gives very limited information on identifying toxic chemicals to test organisms. Toxicity identification evaluation (TIE) techniques have been widely used to identify toxicants in various samples including industrial wastewater as well as natural waters. In response to new regulation for effluent discharge in Korea, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels in industrial effluents. This work was a preliminary study examining toxicity levels in effluent from one metal plating factory using Daphnia magna (48 h immobility) and identifying toxicity-causing substances. Toxicity tests showed variability on different sampling occasions and the results of TIE methods indicated that both organic compounds and metals contributed to the observed toxicity in metal plating effluent. Further studies are necessary to help reduce effluent toxicity especially from direct dischargers, who will have to comply with the new regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号