首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
New bulk chemical analyses are given of Aubres, Bishopville, Bustee, Khor Temiki, Norton County, Peña Blanca Spring and Shallowater, Selective attack by dry chlorine (350°C) on magnetic and non-magnetic fractions was used to determine the distribution of some normally lithophile elements (Al, Ca, Cr, K, Mg, Mn, Na, P and Ti) between silicate and sulphide groups of minerals.  相似文献   

2.
Abstract— The enstatite achondrite meteorites (aubrites) are ultramafic assemblages with highly variable bulk rare earth element (REE) compositions. An enrichment of REE in a dark clast from the Khor Temiki aubrite led Wolf et al. (1983) to suggest that such dark clasts could be the basaltic (i.e., enstatite-plagioclase) complements to the ultramafic aubrites, with the relatively high REE contents resulting from the presence of plagioclase, which is a common carrier of the REEs. We have studied several dark clasts from the Khor Temiki aubrite and find no evidence for a basaltic character for such material. The microscopic character of the dark clasts is not significantly different from the main portions of Khor Temiki and consists either of highly brecciated material, containing a fine-grained matrix, or of enstatite grains with abundant inclusions. We suggest that the dark clasts are shock-darkened, heterogeneous Khor Temiki material that, by chance, contained variable trace contents of oldhamite (CaS), which has been shown to be a major carrier of REE in aubrites. We find that the REE contents of the clasts range from 0.1 to ~20× CI. Most have negative Eu anomalies, but one has a small positive anomaly. Extensive searches have failed to identify basaltic material in Khor Temiki and other aubrites. The absence of basaltic material is consistent with, but does not prove, the model of Wilson and Keil (1991). They calculate that, on an asteroidal parent body < ~100 km in radius, a volatile-rich basaltic partial melt erupted with a velocity greater than the escape velocity of the asteroid and, thus, was lost into space ~ 4.55 Ga ago.  相似文献   

3.
The Mayo Belwa meteorite (an aubrite) contains discrete metal grains ranging in size from less than 1 μm to 300 μm across, and schreibersites up to 25 μm across. Intergrowths of metal and schreibersite also occur. These phases are distributed heterogeneously throughout the meteorite and are present both in the fine-grained matrix and within silicate crystals. The concentrations of the elements Ni, Fe, Si, Co, P, were determined in grains larger than 4 μm across. Most metal grains have 1–8% Ni, the total range being 0.8–23.5% Ni. The 1–8% Ni metal may be sub-divided into two compositional groups, one relatively compact, having 1–3.8% Ni, 0.1-0.3% Si; the second having a much greater range in both Ni and Si (~ 4–12%, 0.1-1.2% respectively). There is no zonation in the Si contents of individual grains. Neither the size of the grains nor their environment correlates with their Ni or Si contents, though there is a tendency for low Ni, low Si metal to be within enstatite crystals. Schreibersite (8–14.4% Ni) occurs as isolated grains or associated with low-Ni metal; it generally contains less than 500 ppm Si. The wide range in the Ni contents of the metal distinguishes it from the metal of the E-chondrites, and argues against an E-chondrite source for this metal.  相似文献   

4.
Several aubrites (e.g., LAP 03719, Bishopville, Khor Temiki, ALH 83015) contain orthopyroxene grains that exhibit more‐pronounced shock effects than associated olivine grains. The orthopyroxene grains in these samples have clinoenstatite lamellae on (100) and exhibit weak mosaic extinction, characteristic of shock stage S4; the olivine grains exhibit either sharp optical extinction, characteristic of shock stage S1 (as in LAP 03719), or undulose extinction (shock stage S2), as in Bishopville and ALH 83015. The Khor Temiki regolith breccia contains S1 and S2 olivine grains. Because literature data show that diffusion is much slower in orthopyroxene than in olivine, it seems likely that aubrites experienced postshock, impact‐induced annealing. After differentiation, the aubrite parent asteroid suffered major collisions that caused extensive brecciation of near‐surface materials and damaged orthopyroxene and olivine crystal lattices. As a result of these impact events, some aubrites were shocked and buried within warm ejecta blankets or beneath fallback debris under the crater floor. Entombed olivine crystal lattices healed (and became unstrained, reaching shock stage S1), but orthopyroxene lattices retained their S4‐level shock‐damaged features. Aubrites with S4 orthopyroxene and S2 olivine were probably very weakly shocked again after olivine was annealed to S1.  相似文献   

5.
Abstract– Perryite [(Fe,Ni)x(Si,P)y], schreibersite [(Fe,Ni)3P], and kamacite (αFeNi) are constituent minerals of the metal‐sulfide nodules in the Sahara 97072 (EH3) enstatite chondrite meteorite. We have measured concentrations of Ni, Cu, Ga, Au, Ir, Ru, and Pd in these minerals with laser ablation, inductively coupled plasma mass spectrometry (ICP‐MS). We also measured their Fe, Ni, P, Si, and Co concentrations with electron microprobe. In kamacite, ratios of Ru/Ir, Pd/Ir, and Pd/Ru cluster around their respective CI values and all elements analyzed plot near the intersection of the equilibrium condensation trajectory versus Ni and the respective CI ratios. In schreibersite, the Pd/Ru ratio is near the CI value and perryite contains significant Cu, Ga, and Pd. We propose that schreibersite and perryite formed separately near the condensation temperatures of P and Si in a reduced gas and were incorporated into Fe‐Ni alloy. Upon further cooling, sulfidation of Fe in kamacite resulted in the formation of additional perryite at the sulfide interface. Still later, transient heating re‐melted this perryite near the Fe‐FeS eutectic temperature during partial melting of the metal‐sulfide nodules. The metal‐sulfide nodules are pre‐accretionary objects that retain CI ratios of most siderophile elements, although they have experienced transient heating events.  相似文献   

6.
Bulk chemical analyses of six E-chondrites (Daniel's kuil, Khairpur, Kota Kota, Saint-Sauveur, South Oman and St Mark's) are given, together with partial analyses of a further five (Blithfield, Hvittis, Indarch, Jajh deh Kot Lalu and Pillistfer). The distribution of some normally lithophile elements (Al, Ca, Cr, K, Mg, Na, P and Ti) between silicate and sulphide groups of minerals was determined using the selective attack by dry chlorine (350°C) on magnetically separated fractions. Subdivision of the E-chondrites into types I and II (Yavnel;, 1963; Anders, 1964) is accepted and it is shown using chemical data that St Mark's and Saint-Sauveur should be included in type I. Sulphides contribute an unexpectedly high proportion of several elements to the bulk: e.g. Ca (av. 88.5% type I, 66.3% type II); Ti(av. 77.1% type I, 84.8% type II) and P as phosphide (av. 44.4% type I, > 83.2% type II). The proportion of Ti contributed to the bulk composition by the sulphides in types I and II increases with increae in ‘thermal metamorphic effect’ (Easton, 1983b) within each type. There is marked variability in the relative abundances of metal, phosphide, silicate and sulphide among the members of each type in keeping with their aggregate nature. The chemical composition of the ‘silicate’ and ‘sulphide’ in type IE-chondrites differs from that in type II (e.g. CaO in the silicates, Mg in the bulk sulphides) which therefore precludes the isochemical evolution of all E-chondrites from a common parent material. Partition of Ti between silicate and sulphide groups of minerals indicates that types I and II E-chondrites originated in separate, chemically distinct bodies.  相似文献   

7.
The size distribution and morphology of metal grains have been examined in 11 sections of types I and II E-chondrites. The changes in the grain-size distribution and morphology of metal grains correspond with the petrologic types and define a series that reflects increase in thermal metamorphism in the following order: type I, Kota Kota-Indarch-South Oman-St. Mark's; and type II, Jajh deh Kot Lalu-Atlanta-Daniel's Kuil-Hvittis-Pillistfer-Khairpur-Blithfield. Concentrations of metal grains adjacent to the perimeters of chondrules are observable throughout the sequence and delineate relic chondritic structure in six of the seven type II E-chondrites; relic structures are absent from Blithfield.  相似文献   

8.
Abstract— Patches of clastic matrix (15 to 730 μm in size) constitute 4.9 vol% of EH3 Yamato (Y‐) 691 and 11.7 vol% of EH3 Allan Hills (ALH) 81189. Individual patches in Y‐691 consist of 1) ?25 vol% relatively coarse opaque grain fragments and polycrystalline assemblages of kamacite, schreibersite, perryite, troilite (some grains with daubréelite exsolution lamellae), niningerite, oldhamite, and caswellsilverite; 2) ?30 vol% relatively coarse silicate grains including enstatite, albitic plagioclase, silica and diopside; and 3) an inferred fine nebular component (?45 vol%) comprised of submicrometer‐size grains. Clastic matrix patches in ALH 81189 contain relatively coarse grains of opaques (?20 vol%; kamacite, schreibersite, perryite and troilite) and silicates (?30 vol%; enstatite, silica and forsterite) as well as an inferred fine nebular component (?50 vol%). The O‐isotopic composition of clastic matrix in Y‐691 is indistinguishable from that of olivine and pyroxene grains in adjacent chondrules; both sets of objects lie on the terrestrial mass‐fractionation line on the standard three‐isotope graph. Some patches of fine‐grained matrix in Y‐691 have distinguishable bulk concentrations of Na and K, inferred to be inherited from the solar nebula. Some patches in ALH 81189 differ in their bulk concentrations of Ca, Cr, Mn, and Ni. The average compositions of matrix material in Y‐691 and ALH 81189 are similar but not identical‐matrix in ALH 81189 is much richer in Mn (0.23 ± 0.05 versus 0.07 ± 0.02 wt%) and appreciably richer in Ni (0.36 ± 0.10 versus 0.18 ± 0.05 wt%) than matrix in Y‐691. Each of the two whole‐rocks exhibits a petrofabric, probably produced by shock processes on their parent asteroid.  相似文献   

9.
Abstract– Six chondritic clasts in the Cumberland Falls polymict breccia were examined: four texturally resemble ordinary chondrites (OCs) and two are impact melt breccias containing shocked OC clasts adjacent to a melt matrix. The six chondritic clasts are probably remnants of a single OC projectile that was heterogeneously shocked when it collided with the Cumberland Falls host. Mayo Belwa is the first known aubrite impact melt breccia. It contains coarse enstatite grains exhibiting mosaic extinction; the enstatite grains are surrounded by a melt matrix composed of 3–16 μm‐size euhedral and subhedral enstatite grains embedded in sodic plagioclase. Numerous vugs, ranging from a few micrometers to a few millimeters in size, constitute ~5 vol% of the meteorite. They occur nearly exclusively within the Mayo Belwa matrix; literature data show that some vugs are lined with bundles of acicular grains of the amphibole fluor‐richterite. This phase has been reported previously in only two other enstatite meteorites (Abee and St. Sauveur), both of which are EH‐chondrite impact melt breccias. It seems likely that in Mayo Belwa, volatiles were vaporized during an impact event and formed bubbles in the melt. As the melt solidified, the bubbles became cavities; plagioclase and fluor‐richterite crystallized at the margins of these cavities via reaction of the melt with the vapor.  相似文献   

10.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

11.
The Qingzhen (EH3) chondrite contains a population of spheroidal metal-sulfide nodules, which display textural evidence of reheating and melting. Evidence of metal sulfuration is also present, suggesting replacement of metal by sulfide during melting. This process has led to the nucleation of perryite along metal-sulfide interfaces. Gallium-bearing sphalerite and a Cu-sulfide of composition intermediate between chalcopyrite and cubanite occur as inclusions within the metal of some nodules. Other phases present are: kamacite, troilite, Ga-free sphalerite, niningerite, perryite, schreibersite, oldhamite, Cr-sulfide (minerals A and B), djerfisherite, SiO2, albite and enstatite. The Ga-bearing sphalerite may have formed by injection of molten sulfide droplets into the metal followed by subsolidus diffusion of Ga from the metal into the sulfide. The latter may occur because of Ga supersaturation in the metal during progressive sulfuration and its decreased affinity for the metal phase during cooling below the taenite-kamacite transition point.  相似文献   

12.
Platinum group element (PGE) concentrations have been determined in situ in ordinary chondrite kamacite and taenite grains via laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). Results demonstrate that PGE concentrations in ordinary chondrite metal (kamacite and taenite) are similar among the three ordinary chondrite groups, in contrast to previous bulk metal studies in which PGE concentrations vary in the order H < L < LL. PGE concentrations are higher in taenite than kamacite, consistent with preferential PGE partitioning into taenite. PGE concentrations vary between and within metal grains, although average concentrations in kamacite broadly agree with results from bulk studies. The variability of PGE concentrations in metal decreases with increasing petrologic type; however, variability is still evident in most type six ordinary chondrites, suggesting that equilibration of PGEs does not occur between metal grains, but rather within individual metal grains via self‐diffusion during metamorphism. The constant average PGE concentrations within metal grains across different ordinary chondrite groups are consistent with the formation of metal via nebular condensation prior to the accretion of ordinary chondrite parent bodies. Post‐condensation effects, including heating during chondrule‐formation events, may have affected some element ratios, but have not significantly affected average metal PGE concentrations.  相似文献   

13.
Abstract— We have determined initial 129I/127I ratios for mineral concentrates of four enstatite meteorites and a eucrite. In the case of the enstatite meteorites the inferred ages are associated with the pyroxene‐rich separates giving pyroxene closure ages relative to the Shallowater standard of Indarch (EH4, 0.04 ± 0.67 Ma), Khairpur (EL6, ?4.22 ± 0.67 Ma), Khor Temiki (aubrite, ?0.06 Ma), and Itqiy (enstatite achondrite, ?2.6 ± 2.6 Ma), negative ages indicate closure after Shallowater. No separate from the cumulate eucrite Asuka (A?) 881394 yielded a consistent ratio, though excess 129Xe was observed in a feldspar separate, suggesting disturbance by thermal metamorphism within 25 Ma of closure in Shallowater. Iodine‐129 ages are mapped to the absolute Pb‐Pb time scale using the calibration proposed by Gilmour et al. (2006) who place the closure age of Shallowater at 4563.3 ± 0.4 Ma. Comparison of the combined 129I‐Pb data with associated 53Mn ages, for objects that have been dated by both systems, indicates that all three chronometers evolved concordantly in the early solar system. The enstatite chondrites are offset from the linear array described by asteroid‐belt objects when 53Mn ages are plotted against combined 129I‐Pb data, supporting the suggestion that 53Mn was radially heterogeneous in the early solar system.  相似文献   

14.
Abstract— We report the results of our petrological and mineralogical study of Fe‐Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe‐Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni‐rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni‐rich metal in type 3.15–3.9 chondrites always contains less Co than does kamacite. Fe‐Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni‐rich regions. Metal in other type 3 chondrites is composed of fine‐ to coarse‐grained aggregates of kamacite and Ni‐rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni‐rich grains in metal (number of Ni‐rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe‐Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe‐Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01.  相似文献   

15.
Abstract— Opaque minerals in the Qingzhen (EH3) and MacAlpine Hills (MAC) 88136 (EL3) enstatite chondrites were studied and compared with other EH and EL chondrites. All opaque minerals usually occur in multi‐sulfide‐metal clasts and nodules in the matrix between chondrules (El Goresy et al., 1988). The higher abundance of opaque minerals, the occurrence of niningerite and various alkali‐sulfides (e.g., caswellsilverite, phases A and B, djerfisherite) are diagnostic criteria for EH chondrites, while alabandite is characteristic for EL chondrites. In addition, EH chondrites are characterized by enrichments of Si in both kamacite and perryite, and alkali elements in sphalerite and chalcopyrite. The Mn contents of daubreelite and sphalerite are lower in EH than in EL chondrites. These are consistent with lower oxygen fugacity and higher H2S fugacity of EH than EL chondrites. In contrast, the discovery of sphalerite and Zn‐rich daubreelite in MAC 88136 indicates that their absence in EL6 chondrites is probably related to thermal metamorphism in the parent body. Schreibersite microspherules are commonly enclosed in most sulfides in Qingzhen, but are absent in MAC 88136. They were once molten, and probably predated all sulfide host phases. The petrographic setting and chemical compositions of the sulfide hosts of the schreibersite microspherules in EH3 chondrites are consistent with formation by condensation. The earliest sulfide condensates oldhamite and niningerite occupy the interiors of the clasts and nodules, whereas the rims consist of troilite and djerfisherite. In addition, in Qingzhen, some other troilite, djerfisherite and sphalerite assemblages coexist with perryite. They were produced by sulfurization of metallic Fe‐Ni in the nebula. In MAC 88136, sulfurization of Si‐bearing Fe‐Ni metal is less pronounced, and it produced troilite, schreibersite and less abundant perryite. Two kinds of normal zoning and a reverse zoning trends of niningerite, and both normal and reverse zoning of sphalerite were found in clasts and nodules in Qingzhen. The coexistence of normal and reverse zoning profiles in niningerite grains in the same meteorite strongly suggests that they formed before accretion in the parent body, because an asteroidal metamorphic or an impact event in the parent body would have erased these contrasting profiles and destroyed the textural settings. In contrast, alabandite in MAC 88136 shows only normal zoning, with the FeS content decreasing to 9.3 mol% toward troilite, indicating very slow cooling at low temperature.  相似文献   

16.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

17.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

18.
We present Raman patterns of enstatite in different classes of enstatite-rich chondrites and achondrites of various shock levels as previously reported from petrographic observations and X-ray diffraction analyses. Thin sections or mineral separates of four enstatite chondrites (LaPaz Icefield [LAP] 02225, MacAlpine Hills [MAC] 02837, Pecora Escarpment [PCA] 91020, and Itqiy), three aubrites (Larkman Nunatak [LAR] 04316, Khor Temiki, and Allan Hills [ALH] 84008), and a ureilite (Sayh al Uhaymir [SaU] 559) were examined by laser Raman spectroscopy. We find that the frequencies of fundamental Raman peaks of enstatites from the chondrites and aubrites deviate by ≤2 cm−1 from the values for unshocked enstatite. This small difference implies a negligible effect of shock metamorphism on peak positions. Significant differences (<6 cm−1) for peak positions are found for the pyroxenes of SaU 559 and may be attributed to minor substitution of Fe and Ca for Mg. Linear regressions of peak widths of enstatite chondrites against their established shock stages show a strong positive correlation for each mode (r2 > 0.94). From this linear relationship, the 343 and 1014 cm−1 peaks of the aubrites coincide with S4 determined from petrography. For Itqiy, we find S4–5, while the shock levels of SaU 559 exceed the petrologic scheme (S1–6), suggesting that the ureilite might have sustained multiple shock events or have been deformed in a high-pressure environment. Alternatively, for Itqiy (peak 343 cm−1) and SaU 559 (all peaks) enstatites, minor substitutions of Fe and Ca for Mg may have further broadened their peak widths.  相似文献   

19.
Haverö consists of large olivine areas with a pavement structure and single crystals of twinned clinopyroxene. Black veins with sharp boundaries traverse the silicates. They contain graphite, diamond, and kamacite. In olivine a reaction rim is formed around these veins containing Ni-poor metal and showing a lower FeO content than farther away from the vein. The CaO content of olivine and pyroxene, 0.27% and 1.7%, respectively, are higher than in these minerals in normal chondrites. The mole percent Fe + Ca/Fe + Ca + Mg in unchanged olivine and in pyroxene agree with the range of L-chondrites. Metal occurs in three types: a, larger grains in the course of the black veins, they contain 2 to 3% Ni; b, micron-sized grains inside the black veins and its reaction rim; c, medium-sized grains with ~0.7% Ni in olivine The interpretation of these observations is: a material similar to an L-chondrite was reheated and recrystallized (at this time it may have lost its feldspar, metal and troilite by partial melting), Ca was redistributed and partly retained in olivine and pyroxene due to rapid cooling, a late introduction of carbon into veins caused a partial reduction of FeO in olivine and formation of Ni-poor metal  相似文献   

20.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号