首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finite element interpretation is discussed of two load tests carried out on bentonite slurry piles bored in granular soils. The first case concerns a pile belonging to a 12 pile group. An axisymmetric finite element model that reproduces, with reasonable accuracy, the experimental results is developed. The model is then extended to three-dimensional conditions and applied to the analysis of the entire group. The results suggest some comments on the different assumptions that can be adopted in the calculations and on their effects on the global load–settlement curve of the pile group. The second case concerns a load test in which, in addition to the load–settlement data, also the axial strains along the pile were measured through electrical extensometers. The numerical back analyses highlight an apparent contradiction between the two sets of experimental data. On their bases some conclusions are drawn on the possible causes of the observed inconsistency and on the influence of the construction technology on the interaction between the pile tip and the soil underneath it.  相似文献   

2.
Vertical loads effect on the lateral response of a 3×5 pile group embedded in sand is studied through a two-dimensional finite element analysis. The soil-pile interaction in three-dimensional type is idealized in the two-dimensional analysis using soil-pile interaction springs with a hysteretic nonlinear load displacement relationship. Vertical loads inducing a vertical pile head displacement of 0.1-pile diameter increase the lateral resistance of the single pile at a 60 mm lateral deflection by 8%. Vertical loads inducing the same vertical displacement applied to a pile group spaced at 3.92-pile diameter increase the overall lateral resistance by 9%. The effect on individual piles, however, depends on the pile position. The vertical load decreases the lateral resistance of the leading pile (pile 1) by 10% and increases the lateral resistances of piles 2, 3, 4, and 5 by 9%, 14%, 17%, and 35%, respectively. Vertical loads applied to the pile group increase the confining pressures in the sand deposit confined by the piles but the rate of increase in those outside the group is relatively small, resulting in the difference in a balance of lateral soil pressures acting at the back of and in front of the individual pile.  相似文献   

3.
Static load test program was performed on a single pile and two 16-pile groups with equal and different pile lengths. The soil profile consists of sand fill to 0.5 m depth placed on a thick deposit of soft, normally consolidated and compressible clay. The closed end steel pipe piles in 60 mm diameter were installed from 1.5 m through 2.1 m depth within soft clay deposit. The center-to-center distance of piles in group is about 3 times of pile diameter. The strain gages were installed at one level above and two through four levels below ground surface. Tests were carried out about 7 days after driving by method of a series of load increments placed every 5-min until plunging failure occurred. The load at plunging failure for the single pile, the equal-length pile group and the different-length pile group were about 3, 40 and 48 kN, respectively. The movements at start of failure were about 12, 18, and 17 mm, respectively. The analysis of strain gage measurements indicates that the load distribution on piles in the different-length pile group has become significantly uniform.  相似文献   

4.
Using pile segment analysis, the mobilized shaft resistance of axially loaded nondisplacement piles in sand is investigated here. It is accepted that the shaft capacity of piles constructed in granular soils is highly influenced by the mechanical behavior of soil–structure interfaces forming adjacent the piles skin. Adopting the thin interface layer as a load transfer mechanism, a simple but accurate critical state compatible interface constitutive model is introduced. After evaluation, the interface model in conjunction with the pile segment analysis is applied for the prediction of the shaft resistance mobilized in nondisplacement piles. The proposed approach takes into account the influences of pile diameter and surface roughness together with the effects of the surrounding soil density and stiffness on the mobilized shaft resistance. The performance of the proposed method is verified by comparing its predictions with the experimental data of various model piles covering wide ranges of length, diameter, roughness, and surrounding soil properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
桩基础非线性工作性状的室内模型试验分析   总被引:1,自引:0,他引:1  
通过对单桩、带承台单桩和不同桩距群桩的模型试验结果分析 ,并与群桩试验的数值计算结果对比 ,总结了群桩中桩体的荷载传递规律 ;描述了板底土体反力和板下土体附加应力分布特性 ;比较了不同桩距群桩的荷载分担状况。通过试验结果的分析 ,得出桩的遮拦作用提高了承台下土体极限承载力的结论 ,为理论研究提供了试验依据 ;同时对桩的非线性工作状况进行分析 ,得出大桩距群桩受荷时桩先进入非线性然后承台下土体再进入非线性的结论。试验结果即验证了复合桩基非线性理论的若干假定 ,又为进一步研究提供了试验依据。  相似文献   

6.
Most analytical or semi‐analytical solutions of the problem of load‐settlement response of axially loaded piles are based on the assumption of zero radial displacement. These solutions also are only applicable to piles embedded in either a homogeneous or a Gibson soil deposit. In reality, soil deposits consist of multiple soil layers with different properties, and displacements in the radial direction within the soil deposit are not zero when the pile is loaded axially. In this paper, we present a load‐settlement analysis applicable to a pile with circular cross section installed in multilayered elastic soil that accounts for both vertical and radial soil displacements. The analysis follows from the solution of the differential equations governing the displacements of the pile–soil system obtained using variational principles. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. We compare the results from the present analysis with those of an analytical solution that considers only vertical soil displacements. The analysis presented in this paper also provides useful insights into the displacement and strain fields around axially loaded piles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
在大桩径、小桩距的群桩条件下,不仅有来自桩侧、桩端和承台传递的多重应力叠加,还有群桩对桩间土的夹持作用影响,桩-土-承台之间作用更加复杂。用有限差分软件模拟固定桩距、桩径,变化竖向荷载下桩-土-承台的相互作用。从各层土的侧摩阻力、不同位置桩的桩顶荷载、荷载-沉降关系、桩间土体位移等方面的计算结果分析桩-土-承台之间的相互影响。结果表明,荷载超出117.8 MN(略大于Pu/2,Pu为群桩极限承载力)后,群桩对上部桩间土的夹持作用开始减小,桩侧上部侧摩阻力增大;桩侧下部侧摩阻力在多重应力叠加作用下呈减小趋势,不同位置的桩侧摩阻力影响范围有差异;用群桩沉降达到5%倍桩径时的荷载作为群桩的竖向极限承载力是可取的;当沉降与桩径的比值超出1%后,承台分担荷载的比例逐渐增大,群桩分担荷载的比例减小。  相似文献   

8.
悬臂式抗滑桩模型试验研究   总被引:2,自引:0,他引:2  
刘洪佳  门玉明  李寻昌  张涛 《岩土力学》2012,33(10):2960-2966
作为治理滑坡的重要手段之一的抗滑桩,由于岩土体介质的特殊性,桩后滑坡推力、土体抗力及桩身变形破坏模式与理论计算存在较大差异。通过悬臂式抗滑桩加固滑坡的模型试验,对滑体进行逐级加载,测得桩后滑坡推力、桩前土体抗力和桩体的应变,研究滑坡推力分布、土体抗力的变化情况、桩身变形破坏模式。试验结果表明,对于悬臂式抗滑桩可分为分离段和接触段两部分,滑坡推力逐渐向接触段集中;桩前土体抗力主要在桩前25 cm以上,随着深度增加,抗力逐渐减小;悬臂式抗滑桩为折断破坏形式,破坏点的位置在滑面以下25 cm处。模型破坏主要是由于桩前土体发生屈服,从而使桩顶部位移过大,致使桩身因折断破坏而失效,最终滑坡模型失稳。其结果可为实际工程提供借鉴。  相似文献   

9.
The concrete-cored deep cement mixing (DCM) pile is a new kind of composite pile created by inserting precast core pile into the DCM column socket and has only been used in a few projects to date. The bearing mechanism of concrete-cored DCM pile composite foundation has not been investigated systematically. In this paper, plate load tests (PLT) on single pile composite foundation were conducted in Nanjing–Changzhou expressway, Xinhua district in Jiangyin city and Nanjing surrounding (NS) expressway. Following the results of the PLT, a comparison of ultimate bearing capacity between composite foundation reinforced by concrete-cored DCM pile and DCM column was made. During the PLT process, the vertical stress of surrounding soil and DCM column socket was measured using pressure cells. The vertical stress of precast core pile was obtained using steel stress gauge welded onto the reinforcement. Based on the vertical stress of surrounding soil, DCM column socket and precast core pile, the skin friction and load sharing ratio were obtained. The variation in surrounding soil properties depending on the installation of concrete-cored DCM pile was also analyzed using the results from cone penetration tests (CPT) taken in NS expressway. With the analysis of results for stress tests and CPT, the bearing mechanisms of composite foundation reinforced by concrete-cored DCM pile are obtained.  相似文献   

10.
考虑桩体固结变形的散体材料桩复合地基固结解析计算   总被引:2,自引:0,他引:2  
赵明华  刘敦平  张玲 《岩土力学》2010,31(2):483-488
将单个散体材料桩截面和单桩影响范围内的桩周土截面作为一个研究单元考虑,由固结过程中孔隙水排出量等于单元体体积减小量,并引入平均超孔隙水压力的概念,考虑桩体的固结变形,推得散体材料桩复合地基的固结方程。通过等应变假设和初始边界条件,由分离变量法对该固结方程进行求解,得到了桩体和桩间土的平均超孔隙水压力、平均固结度、复合地基整体固结度。通过某工程实例计算,将计算结果与已有解析解进行了比较分析。当散体材料桩复合地基的井径比较大时,两者计算结果十分相近;当井径比较小时,两者差别较大。  相似文献   

11.
艾智勇  成志勇 《岩土力学》2009,30(5):1522-1526
以层状地基内部作用一竖向集中力时的广义Mindlin解作为边界单元法的基本解,对层状地基中的轴向受荷单桩进行了分析,对基本解的奇异性处理方法进行了改进。考虑了桩的可压缩性和长径比对桩-土荷载传递规律和沉降特性的影响,编制了计算程序,并进行了数值分析和计算。结果表明,该方法具有较快的计算速度和良好的计算精度。  相似文献   

12.
万志辉  戴国亮  龚维明 《岩土力学》2018,39(4):1386-1394
为了研究超厚细砂地层大直径后压浆桩的荷载变形特性,基于石首长江公路大桥8根大直径钻孔灌注桩现场静载荷试验结果,分析大直径后压浆桩的荷载传递特性,采用BoxLucas1函数的荷载传递模型,在考虑浆泡半径和桩身水泥结石体厚度的基础上建立了后压浆桩荷载-沉降关系的计算方法,并给出了不同土层桩侧、桩端增强因子经验取值范围,通过工程实例验证了方法的合理性;基于实际工程通过改变桩长及桩径,进一步计算分析超厚细砂地层大直径桩承载特性的变化规律。结果表明,该方法能较好地给出后压浆桩荷载-沉降关系的范围,可采用计算结果的下限作为工程设计使用;大直径桩承载性能随着桩长或桩径增加逐渐提高,桩径一定时,大直径桩的承载性能提高幅度随着桩长增加而逐渐趋于缓慢,且桩长达到一定值时,端阻所占比例几乎为0,表明通过增加桩长来提升大直径桩的承载性能受到有效桩长的影响;而桩端、桩侧组合后压浆技术能改善大直径桩的有效桩长问题,并能显著地提高大直径桩的极限承载力和端阻力所占比例。  相似文献   

13.
马志涛  刘汉龙  张霆  费康 《岩土力学》2006,27(Z1):818-820
现浇薄壁管桩(Cast-in-place Concrete Thin-wall Pipe Pile, 简称PCC桩)作为一种新型桩基础,已在很多地基处理工程中得到应用,但有关其水平承载性的研究还很少。通过现场试验,对水平荷载下PCC桩的水平承载性、泥面处桩荷载-位移关系、桩周土压力变化以及桩侧地基水平抗力系数的比例系数m与位移关系等特性进行初步分析,同时对单向多循环加载和慢速维持荷载两种加载方式对桩受力特性的影响进行比较。试验表明,PCC桩有较好的水平承载性,在水平荷载下,PCC桩的受力主要集中在桩的上部;与慢速维持荷载法相比,单向多循环法对桩的水平承载性以及桩土作用的非线性影响较大。  相似文献   

14.
Load displacement response and ultimate resistance of piles in sand under uplift load are predicted by load transfer approach. The pile is divided into number of segments and assigned geometrical and material properties according to actual soil pile situation. The shaft resistance is obtained analytically in accordance with existing studies. The proposed method takes into account the length, diameter and relevant surface characteristics of pile and soil properties. The load displacement characteristics and the value of uplift capacity of vertical piles from field test have been predicted. Reasonable agreement has been found out between predicted and observed values of uplift capacity. Load transfer mechanism is capable of predicting the nonlinear variation of load-displacement response of piles.  相似文献   

15.
Static and dynamic lateral load tests were carried out on model aluminium single piles embedded in soft clay to study its bending behaviour. Model aluminium piles with length to diameter ratios of 10, 20, 30 and 40 were used. Static lateral load tests were conducted on piles by rope and pulley arrangement upto failure and load–deflection curves were obtained. Dynamic lateral load tests were carried out for different magnitudes of load ranging from 7 to 30 N at wide range of frequencies from 2 to 50 Hz. The load transferred to the pile, pile head displacement and the strain variation along the pile length were measured using a Data Acquisition System. Safe static lateral load capacity for all piles is interpreted from load–deflection curves. Dynamic characteristics of the soil–pile system were arrived from the acquired experimental data. The soil–pile system behaves predominantly in nonlinear fashion even at low frequency under dynamic load. The displacement amplitude under dynamic load is magnified by 4.5–6.5 times the static deflection for all piles embedded in soft clay. But, the peak magnification factor reduces with an increase in the magnitude of lateral load mainly because of increase of hysteretic damping at very soft consistency. The maximum BM occurs at the fundamental frequency of the soil–pile system. Even the lower part of the pile affects the pile head response to the inertial load applied at the pile head. The maximum dynamic BM is magnified by about 1.5 times the maximum static BM for model piles in tested consistency of clay. The maximum dynamic BM occurs at a depth of about 1.5 times the depth of maximum static BM for model piles, which indicates an increase of active pile length under dynamic load.  相似文献   

16.
A modulus‐multiplier approach, which applies a reduction factor to the modulus of single pile py curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non‐linear pile–soil–pile interaction. The pile–soil–pile interaction is conducted using a 3D non‐linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well‐documented full‐scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Although the loads applied on piles are usually a combination of both vertical and lateral loads, very limited experimental research has been done on the response of pile groups subjected to combined loads. Due to pile–soil–pile interaction in pile groups, the response of a pile group may differ substantially from that of a single pile. This difference depends on soil state and pile spacing. This paper presents results of experiments designed to investigate pile interaction effects on the response of pile groups subjected to both axial and lateral loads. The experiments were load tests performed on model pile groups (2 × 2 pile groups) in calibration chamber sand samples. The model piles were driven into the sand samples prepared with different relative densities using a sand pluviator. The combined load tests were performed on the model pile groups subjected to different axial load levels, i.e., 0 (pure lateral loading), 25, 50, and 75% of the ultimate axial load capacity of the pile groups, defined as the load corresponding to a settlement of 10% of the model pile diameter. The combined load test results showed that the bending moment and lateral deflection at the head of the piles increased substantially for tests performed in the presence of axial loads, suggesting that the presence of axial loads on groups of piles driven in sand is detrimental to their lateral capacity.  相似文献   

18.
A simplified analysis of the problem of horizontal soil stress changes around circular displacement piles, caused by pile placement, is presented. Pile installation is assumed to cause soil displacements in the horizontal direction only, thus yielding an axisymmetric problem. The soil surrounding the pile is modelled as a weightless non-linear elastic material. Material non-linearity is handled in a simplified manner by adopting secant shear moduli defined in terms of a proportionality coefficient and a softening factor. The resulting equilibrium equation is solved analytically and an expression is obtained which is also conveniently presented in graphical form. The derived expression can be used to estimate horizontal soil stress changes and is incorporated into a simple procedure to estimate the ultimate load or the efficiency of pile groups. Comparisons are made between efficiencies calculated according to this procedure and efficiencies measured in full-scale group load tests in sand.  相似文献   

19.
王立峰 《岩土力学》2014,35(Z2):319-324
隧道盾构施工过程中因盾构对土体的扰动和盾构脱出而没有及时注浆或注浆量不够,通常会对隧道邻近的桩基造成影响,如桩基内力发生改变从而使桩基变形、移位等,影响了桩基的承载力和正常使用。正交试验是一种高效、快速的找出某种指标的主要和次要影响因素的方法。通过建立盾构施工过程中近邻桩基的弹塑性有限元模型,结合正交试验和方差分析,得到了盾构施工对近邻桩基的影响因素大小。结果表明,盾构隧道施工过程中对近邻桩基沉降影响大小的因素依次为:桩与隧道的距离、桩顶荷载、应力损失和土体物理力学性质;桩基在(2.5~3.0)D0(D0为隧道直径)以外,则桩基基本上不受盾构开挖的影响;桩顶沉降与桩顶原来的荷载相关性显著,桩顶荷载的大小反映了土体应力水平的高低。根据方差分析的显著性检验结果提出桩基近邻度的概念和计算公式,把盾构隧道周围的桩基分为非常近、近邻、远邻和非常远等4类桩,表明Ⅰ类桩和Ⅱ类桩受到盾构施工的影响较大,施工前应对桩基采取必要的保护和加固措施,Ⅲ类桩视情况进行处理,Ⅳ类桩一般不需要处理。  相似文献   

20.
The plugging of pipe piles is an important phenomenon, which is not adequately accounted for in the current design recommendations. An open-ended pipe pile is said to be plugged when the soil inside the pile moves down with the pile, resulting in the pile becoming effectively closed-ended. Plugging is believed to result in an increase in the horizontal stresses between the pile and the surrounding soil, which results in an increase in skin friction. A total number of 60 model pile tests are carried out to investigate the behavior of plugs on the pile load capacity and the effects of plug removal. Different parameters are considered, such as pile diameter–to–length ratio, types of installation in sands of different densities, and removal of the plug in three stages (50, 75, and 100 %) with respect to the length of plug. The changes in the soil plug length and incremental filling ratio (IFR) with the penetration depth during pile driving show that the open-ended piles are partially plugged from the outset of the pile driving. The pile reached a fully plugged state for pressed piles in loose and medium sand and partially plugged (IFR = 10 %) in dense sand. For driven piles, the IFR is about 30 % in loose sand, 20 % in medium sand, and 30 % in dense sand. The pile load capacity increases with increases in the length of the plug length ratio (PLR). The rate of increase in the value of the pile load capacity with PLR is greater in dense sand than in medium and loose sand. Based on test results, new empirical relation for the estimation of the load carrying capacity of open-ended piles based on the IFR is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号