首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In the design procedure for a retaining wall, the pseudo-static method has been widely used and dynamic earth pressure is calculated by the Mononobe–Okabe method, which is an extension of Coulomb’s earth pressure theory computed by force equilibrium. However, there is no clear empirical basis for treating the seismic force as a static force, and recent experimental research has shown that the Mononobe–Okabe method is quite conservative, and there exists a discrepancy between the assumed conditions and real seismic behavior during an earthquake. Two dynamic centrifuge tests were designed and conducted to reexamine the Mononobe–Okabe method and to evaluate the seismic lateral earth pressure on an inverted T-shape flexible retaining wall with a dry medium sand backfill. Results from two sets of dynamic centrifuge experiments show that inertial force has a significant impact on the seismic behavior on the flexible retaining wall. The dynamic earth pressure at the time of maximum moment during the earthquake was not synchronized and almost zero. The relationship between the back-calculated dynamic earth pressure coefficient at the time of maximum dynamic wall moment and the peak ground acceleration obtained from the wall base peak ground acceleration indicates that the seismic earth pressure on flexible cantilever retaining walls can be neglected at accelerations below 0.4 g. These results suggest that a wall designed with a static factor of safety should be able to resist seismic loads up to 0.3–0.4 g.  相似文献   

2.
Knowledge of seismic active earth pressure behind rigid retaining wall is very important. Commonly used Mononobe–Okabe method considers pseudo-static approach, which gives the linear distribution of seismic earth force. In this paper, the pseudo-dynamic approach, which considers the effect of primary and shear wave propagations, is adopted to calculate the seismic active force. Considering the planar rupture surface, the effect of wide range of parameters like inclination of retaining wall, inclination of backfill surface, wall friction and soil friction angle, shear wave and primary wave velocity, horizontal and vertical seismic coefficients are taken into account to evaluate the seismic active force. Results are presented in terms of seismic coefficients in tabular form and variation of pressure along the depth.  相似文献   

3.
The current study proposes an analytical closed-form solution for the dynamic distress of rigid fixed-base retaining systems aiming at evaluating the main assumptions and limitations of the pertinent available elasticity-based methods. The new solution is actually an extension of the well-known model of Wood and is capable of evaluating the dynamic distress of either a single or a pair of rigid fixed-base walls interacting with each other, in the case of harmonic base loading. Wall distress is mainly evaluated in terms of dynamic earth pressures, shear forces and bending moments, while the original concept of a “distress spectrum” is introduced as a potential new tool for the seismic design of retaining structures. Distress and wall deformation are interrelated in a number of three-dimensional graphs, where dynamic interaction phenomena are evident. Finally, given the rigorous nature of the new solution, its results verify qualitatively and quantitatively the negligible amplitude of the computational errors of the approximate elasticity-based solutions proposed in the literature.  相似文献   

4.
This paper describes a laboratory model test carried out on high-density polyethylene (HDPE), small diameter pipes buried in trenches, which subjected to repeated loadings to simulate the vehicle loads. Deformation of the pipe was recorded at eight points on the circumference of the tested pipes to measure the radial deformations and detect cross-sectional pipe profiles. Also settlement of the soil surface during the test up to 1000 cycles of loadings was recorded, until its value become stable or the excessive settlement was happened. The parameters varied in the testing program include height of buried depth, relative density of the sand and intensity of stress on the soil surface. The influence of various repeated loads (with magnitude of 250, 400 and 550 kPa) at relative densities of 42%, 57% and 72% in different embedded depth of 1.5–3 times of pipe diameter were investigated. Based on the results, in medium and dense sand relative density, the pipe embedded in depth of 3.0D and 2.0D, respectively, mostly remained undamaged (the maximum value of VDS is less than 5%) and increased the safety of buried pipes under different magnitude of repeated loads. The records of the pipe deformation and settlement of the soil surface due to the repeated loads have been compared in different conditions. These values increase rapidly during the initial loading cycles by a rate decreasing significantly as the number of cycles increase. The influence of the first cycle was also found to be one of the main behavioral characteristics of buried pipes under repeated loads. The ratio of deformation of pipe at first cycle to last cycle changes from 0.60 to 0.85 in different of tests. Finally for the obtained results, a non-linear power model has been developed to estimate the vertical diametral strain of buried pipe and settlement of the soil surface based on the model test data. It should be noted that only one type of pipe and one type of sand are used in laboratory tests.  相似文献   

5.
6.
Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30º and satisfy the requirements of the BSI Specification.  相似文献   

7.

Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake. However, seismic damage mechanism of this kind of wall is not sufficiently clear. In view of this, a large shaking table test of the gravity retaining wall with geogrids to reinforce the subgrade slope was carried out, and based on the Hilbert-Huang transform and the marginal spectrum theory, the energy identification method of the slope dynamic failure mode was studied. The results show that the geogrids can effectively reduce displacement and rotation of the retaining wall, and it can effectively absorb the energy of the ground movement when combined with the surrounding soil. In addition, it also reveals the failure development of the gravity retaining wall with geogrids to reinforce the subgrade slope. The damage started in the deep zone near the geogrids, and then gradually extended to the surface of the subgrade slope and other zones, finally formed a continuous failure surface along the geogrids. The analysis results of the failure mode identified by the Hilbert marginal spectrum are in good consistency with the experimental results, which prove that the Hilbert marginal spectrum can be applied to obtain the seismic damage mechanism of slope.

  相似文献   

8.
Interpretation of single-well tests with the Cooper-Jacob method remains more reasonable than most alternatives. Drawdowns from 628 simulated single-well tests where transmissivity was specified were interpreted with the Cooper-Jacob straight-line method to estimate transmissivity. Error and bias as a function of vertical anisotropy, partial penetration, specific yield, and interpretive technique were investigated for transmissivities that ranged from 10 to 10,000 m(2)/d. Cooper-Jacob transmissivity estimates in confined aquifers were affected minimally by partial penetration, vertical anisotropy, or analyst. Cooper-Jacob transmissivity estimates of simulated unconfined aquifers averaged twice the known values. Transmissivity estimates of unconfined aquifers were not improved by interpreting results with an unconfined aquifer solution. Judicious interpretation of late-time data consistently improved estimates where transmissivity exceeded 250 m(2)/d in unconfined aquifers.  相似文献   

9.
利用大型振动台模型试验,测得了猴子岩高面板堆石坝缩尺模型坝的动力特性参数,包括大坝结构的自振频率、阻尼比和振型系数等;分析了多种因素对坝体动力特性的影响规律;根据模型试验相似率推算得到原型坝的相应动力特性参数。研究表明:大坝结构有相对稳定的振型;坝体的动力特性参数值受激振白噪声强度和振动历史等因素影响;水库蓄水使得模型坝结构自振频率小幅提升。这些试验结果和研究结论,可以为该坝的动力分析提供基本资料和定性参考。  相似文献   

10.
The results of an experimental study conducted on two 1:2 reduced-scale geotextile-reinforced soil retaining walls are presented and discussed. El Centro earthquake and sinusoidal harmonic motion excitations were applied to the 1.9 m tall models. The design parameter investigated was the reinforcement length (L/H = 0.9 in the 1st model and L/H = 0.6 in the 2nd model). The results were analyzed to evaluate the acceleration amplification, strains in the reinforcement layers and facing wall deformation. The test results showed that in both experiments the walls were in fact designed to behave rigidly and almost no residual displacements were observed on the front of the wall. The most important conclusion drawn from the experimental work was that Geosynthetic Reinforced Retaining Structures designed according to the current specifications behave very successfully under earthquake loading conditions.  相似文献   

11.
由于强度、环保、施工方便等多方面的优势,混凝土空心砌块成为粘土砖的最理想的替代材料。不过砌块建筑经历的震害很少,抗震研究的成果也少。针对多层砌块建筑的抗震设计需求,模拟不同楼层压力,对15片1.4m×1.2m的空心混凝土砌块墙片进行了伪静力试验,得到了往复力-位移曲线,可供砌块结构抗震设计参考。  相似文献   

12.
短肢剪力墙空间剪滞墙元模型   总被引:1,自引:0,他引:1  
通过对短肢剪力墙受力分析的研究,考虑了翼板的“剪力滞后”效应,构造了新的纵向位移函数,利用能量变分原理导出了考虑剪滞效应和剪切变形的控制方程和边界条件,并以控制方程的解析解为形函数,利用边界条件和刚度法建立了异形截面短肢剪力墙的统一单元刚度矩阵,并利用空间变换原理建立了空间分析刚度矩阵。通过算例并和其它分析模型比较,结果表明本方法能求得较满意的结果。  相似文献   

13.
A fully coupled finite element code based on mixture theory is developed. Prévost's multi-surface constitutive model is tailored to three-dimensional loads and used to predict effective stresses. A new viscous boundary is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb the two dilatational waves and the shear wave.Two soil deposits and two dams, with different slopes, composed by loose and dense sands have been subjected to the Pacoima accelerogram. Results show how the liquefaction propagates in the soil deposits and earth dams. The importance of the coupling between dilatancy–contractancy and filtration is highlighted by a parametric investigation. Phenomena such as liquefaction and cyclic mobility are reproduced, indicating the robustness of the constitutive model and finite element simulations. As an outcome of the parametric analysis, the seismic stability of dams cannot be improved by decreasing the upstream or downstream slopes.  相似文献   

14.
基于运动稳定性理论,以1座实际的钢管混凝土肋拱桥为例,利用改进的时间冻结法(动态特征值法)求得结构在地震波作用下的动态稳定系数时间历程,研究了不同输入方向和阻尼比对动力稳定临界系数的影响,并探讨了地震波作用下拱桥的稳定安全系数,对钢管混凝土拱桥的弹性动力稳定性能作出了评估。  相似文献   

15.
采用动三轴试验系统对加筋土试样进行固结不排水三轴剪切试验。研究了在不同加筋材料、不同加筋层数、不同围压、不同固结应力比条件下的加筋土的动弹性模量变化规律,并与素土试样试验结果进行对比。研究结果表明,加筋土的动弹性模量随围压和固结应力比的增加而增大,窗纱加筋试样的最大动模量相比素土有了较大的提高,并随着加筋层数的增加而增大,土工布加筋土试样最大动弹模量与素土的最大动弹模量增减趋势不明确。  相似文献   

16.
Harvard Centroid Moment Tensor (CMT) solutions for earthquakes from 1977 to 2004 showed that the stress fields are obviously different in northwestern Sichuan sub-block (NWSSB), western parts of Central Yunnan sub-block (CYSB) and eastern part of CYSB. The characteristics of the mean stress fields in these three regions are obtained by fitting to CMT solutions. The stress state in NWSSB is characterized by its sub-horizontal tensile principal axis of stress (T axis) in roughly N-S direction and west dipping compressive principal axis of stress (P axis); the one in western part of CYSB is characterized by its ENE dipping T axis and sub-horizontal medium prin-cipal axis of stress (B axis) in roughly N-S direction; the one in eastern part of CYSB is characterized by its sub-horizontal P axis in roughly NNW-SSE direction and sub-horizontal T axis in roughly WSW-ENE direction. Finite element method simulation clearly shows that the Indian Plate imposes great extrusion on Sichuan-Yunnan rhombic block (SYRB) near Assam massif. The value of the simulated compressive principal stress decreases with the distance from Assam massif. The simulated directions of the T axes in SYRB form annular distribution encir-cling Assam. For a homogeneous elastic medium with free boundary conditions on the top and bottom surfaces as well as the displacement boundary conditions derived from the GPS observations on the lateral boundaries, the computation results are consistent with the Harvard CMT solutions in NWSSB and western part of CYSB, while inconsistent with the Harvard CMT solutions in eastern part of CYSB. The inconsistency in eastern part of CYSB can be reduced when it includes inhomogeneous elastic media. The stress states in NWSSB and western part of CYSB revealed by the Harvard CMT solutions are not local, which are mainly controlled by the boundary force on the whole region. On the other hand, the stress state in eastern part of CYSB given by the Harvard CMT solutions is local, which may be affected by local topography, material inhomogeneity, and the drag force underneath.  相似文献   

17.
During strong ground motions, structural members made of reinforced concrete undergo cyclic deformations and experience permanent damage. Members may lose their initial stiffness as well as strength. Recently, Los Alamos National Laboratory has performed experiments on scale models of shear wall structures subjected to recorded earthquake signals. In general, the results indicated that the measured structural stiffnesses decreased with increased levels of excitation in the linear response region. Furthermore, a significant reduction in strength as well as in stiffness is also observed in the inelastic range. Since the in-structure floor response spectra which are used to design and qualify safety equipment have been based on calculated structural stiffness and frequencies, it is possible that certain safety equipment could experience greater seismic loads than were specified for qualification due to stiffness reduction.In this research, a hysteresis model based on the concept of accumulated damage has been developed to account for this stiffness degradation both in the linear and inelastic ranges. Single and three-degrees-of-freedom seismic Category I structures were analysed and compared with equivalent linear stiffness degradation models in terms of maximum displacement responses, permanent displacement, and floor response spectra. The results indicate significant differences in response between the hysteresis model and equivalent linear stiffness degradation model at PGA levels of greater than 0.8 g. The hysteresis model is used in the analysis of reinforced concrete shear-wall structures to obtain the in-structure response spectra. Results of both cumulative and one shot tests are compared.  相似文献   

18.
《Advances in water resources》2005,28(10):1057-1075
The theory of a pumping test or a slug test to measure aquifer transmissivity or storativity assumes that the aquifer properties are uniform around the well. The response of the drawdown to small spatial variations in aquifer properties in the volume of influence is determined by spatial weighting functions or Fréchet kernels, which in general are functions of space and time. The Fréchet kernels determine the effective “volume of influence” of the measurements at any time. Under the assumption that the well is a line sink we derive explicit analytical expressions for the Fréchet kernels for storativity and for transmissivity for both pumping and slug tests. We also derive the total sensitivity functions for uniform variations in storativity and transmissivity and show that they are the spatial integrals of the Fréchet kernels. We consider both the case of separate pumping and observation wells and also the radially symmetric case of observations made at the pumped or slugged well. The “volume of influence” is symmetric with respect to the pumping or slugged well and the observation well, and far from the well the contours of equal spatial sensitivity approach the shapes of ellipses with a well at each focus, rather than circles centered on the pumping well. We use the analytical solutions to investigate the nature of the singularities in the spatial sensitivity functions around the wells, which govern the importance of inhomogeneities close to the well or observation point.  相似文献   

19.
Anisotropic common S-wave rays are traced using the averaged Hamiltonian of both S-wave polarizations. They represent very practical reference rays for calculating S waves by means of the coupling ray theory. They eliminate problems with anisotropic-ray-theory ray tracing through some S-wave slowness-surface singularities and also considerably simplify the numerical algorithm of the coupling ray theory for S waves. The equations required for anisotropic-common-ray tracing for S waves in a smooth elastic anisotropic medium, and for corresponding dynamic ray tracing in Cartesian or ray-centred coordinates, are presented. The equations, for the most part generally known, are summarized in a form which represents a complete algorithm suitable for coding and numerical applications.  相似文献   

20.
The effects of elastic and electromagnetic (EM) fields are studied as an additional factor of energy exchange in the process of the deformation of a heterogeneous medium. The threshold value of initiating energy, Ktr(kp), relative to the current relaxation process is quantitatively estimated. It is shown that the estimated energy impacts below the threshold can initiate relaxation of local structural stresses and, thus, reduce the risk of a macrofracture. In a seismically active region, a similar scenario of initiation of dynamic development is considered in the local zones of potential sources of earthquakes. The possibility to determine the location, the time, and the intensity of the initiating EM impact is considered. From the experiments, the coefficient of electromechanical conversion is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号