首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The load response of a rock-socketed steel H-pile can be strongly influenced by the nonlinear interfacial behavior between the grout and the steel H-pile, and between the pile and the rock mass. This paper focuses on the load-transfer mechanism of the former interface through experimental push-out tests and numerical simulation of the tests. The study is divided into two parts. In the first part, a series of push-out tests have been carried out on four types of specimens (with studs + confinement (Case I); no stud + confinement (Case II); no stud + no confinement (Case III); and studs + no confinement (Case IV)). The second part is a numerical study based on three-dimensional finite element technique, which takes into account possible damage and cracking in grout, as well as bond-slip along the interface. It is shown that the numerical predictions of the four cases compare favorably with the corresponding test results, including the load–displacement response and the development of cracks. Furthermore, parametric study has been carried out to investigate the influence of various factors, including the studs, the casing confinement, the grout fracture energy, and the dilation property of steel-grout interface. Lastly, some implications, based on the test and numerical results, on the design of socketed steel H-piles are discussed.  相似文献   

2.
Geotechnical characterisation is undertaken for 3 broad units comprising the bulk of the stratigraphy identified on White Island Volcano, Bay of Plenty, New Zealand, an active island stratovolcano. Field and laboratory measurements were used to describe rock mass characteristics for jointed lava flow units, and ring shear tests were undertaken to derive residual strength parameters for joint infilling materials within the lavas. Rock Mass Rating (RMR) and Geological Strength Index (GSI) values were calculated and converted to Mohr-Coulomb strength parameters using the Hoek-Brown criterion. Backanalysis of known landslide scarps was used to derive strength parameters for brecciated rock masses and hydrothermally altered rock masses. Andesite lava flows have high intact strength (σci = 184 ± 50 MN m− 2; γ = 24.7 ± 0.3 kN m− 3) and typically 3 wide, infilled joint sets, one parallel to flow direction and two steeply inclined, with spacings of 0.3-1.7 m. Joints are rough, with estimated friction angles for clean joints of ?j = 42-47°. Joint infill materials are clayey silts derived from weathering of wall rocks and primary volcanic sources; they have low plastic (54%) and liquid (84%) limits and residual strength values of cr = 0 kN m− 2 and ?r = 23.9 ± 3.1°. RMR values range from 70 to 73, giving calculated strength parameters of c′ = 1161-3391 kN m− 2 and ?′ = 50.5-62.3°. Backanalysis suggests brecciated rock masses have c′ = 0 kN m− 2 and ?′ = 35.4°, whereas GSI observations in the field suggest higher cohesion (c′ = 306-719 kN m− 2) and a range of friction angles bracketing the backanalysed result (?′ = 30.6-41.7°). Hydrothermally altered rock masses have c′ = 369 kN m− 2 and ?′ = 14.9°, indicating considerable loss of strength, especially frictional resistance, compared with the fresh lava units. Values measured at outcrop scale in this study are in keeping with other published values for similar volcanic edifices; backanalysed data suggest weaker rock mass properties than those determined at outcrop. This is interpreted as a scale issue, whereby rock mass characteristics of a large rock mass (crater wall scale) are weaker than those of small outcrops, due in part to the overestimation of friction angle from measurements on small exposures.  相似文献   

3.
The geothermal use of concrete geostructures (piles, walls and slabs) is an environmentally friendly way of cooling and heating buildings. With such geothermal structures, it is possible to transfer energy from the ground to fluid‐filled pipes cast in concrete and then to building environments. To improve the knowledge in the field of geothermal structures, the behaviour of a pile subjected to thermo‐mechanical loads is studied in situ. The aim is to study the increased loads on pile due to thermal effects. The maximum thermal increment applied to the pile is on the order of 21°C and the mechanical load reached 1300 kN. Coupled multi‐physical finite element modelling is carried out to simulate the observed experimental results. It is shown that the numerical model is able to reproduce the most significant thermo‐mechanical effects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Measured settlements of buildings on the weathered Keuper Marl appeared to be much smaller than calculated settlements, which were based on stiffness modulus from standard oedometer tests. Therefore, both special triaxial K 0-tests and oedometer tests were carried out for an accurate determination of stiffness moduli. Modulus obtained in the triaxial K 0-tests were at least two to three times the values obtained in the oedometer tests. To verify observations from the laboratory tests, the loads and the settlements of two single footings on weathered Keuper mudstone have been measured during construction of a building over 1 year. Also, a large scale footing load test with measurements of deformations were conducted on the weathered Keuper mudstone. The measured settlements of the two single footings and the tested foundation were compared with the settlements based on conventional calculations with moduli from oedometer tests and triaxial K 0-tests. Up to a foundation pressure of σv = 500 kN/m2 the calculated settlement based on E S-modulus obtained from triaxial K 0-tests was found to correspond well to the measured deformation. For foundation pressure beyond 500 kN/m2, the foundation response was highly non-linear and it could not be described any more with the linear-elastic model. Therefore the footing load test was also simulated by FEM analyses.  相似文献   

5.
A case study on the behaviour of a deep excavation in sand   总被引:1,自引:0,他引:1  
A complete case record of an excavation in sand is explored in this study. Numerical analyses were conducted to evaluate the influences of soil elasticity, creep and soil–wall interface. Back-analyses indicate small strain parameters should be used if an elastic–perfect plastic model is selected. In addition, excavation-induced seepage has only a limited effect on vertical displacements. Delayed installation of 3rd level struts and base slab construction caused significant time-dependent (creep) movements during the excavation. Back-analyses show that the dynamic viscosity (Dv) used in the visco-elastic model for creep simulation is in the range of 1.5 × 1015–2.0 × 1015 Pa, but there are still inconsistencies in movements both near to and far from the excavation. Interpreting from observation data, the creep rate of wall movement caused in the non-supported stage of the excavation varies between 0.14 and 0.38 mm/day. Finally, parametric studies of interface elements indicate that the most sensitive parameters are the normal (Kn) and shear stiffness (Ks) of the interface. Back-analyses using an elastic–perfect plastic model indicate that using 3 × 106 Pa for Kn and Ks produces more acceptable results.  相似文献   

6.
Capacity based design of pile foundations limits the soil-structure interaction mechanism to group bearing capacity estimation, neglecting, in most cases, the contribution of the raft. On the other hand, a straightforward, nonlinear, 3-D analysis, accounting for soil and structural nonlinearities and the effects arising from pile–soil–pile interaction, would be extremely high CPU-time demanding and will necessitate the use of exceptionally powerful numerical tools. With the aim of investigating the most efficient, precise, and economical design for a bridge foundation, a hybrid method, compatible with the notion of sub-structuring is proposed. It is based on both experimental data and nonlinear 3-D analysis. The first step to achieve these targets is a back-analysis of a static pile load test, fitting values for soil shear strength, deformation modulus, and shear strength mobilization at the soil–pile interface. Subsequently, the response of 2 × 2 and 3 × 3 pile group configurations is numerically established and the distribution of the applied load to the raft and the characteristic piles is discussed. Finally, a design strategy for an optimized design of pile raft foundations subjected to non-uniform vertical loading is proposed.  相似文献   

7.
The accurate estimation of metal loads transported by streams is necessary to calculate reliable mass transfers of metals between compartments, both at local and global scales. This estimation is particularly relevant in the case of the Tinto and Odiel Rivers (SW Spain) due to their significant contribution to the total metal transfer from continents to the ocean. At a local scale, the metal load transported by streams plays a key role in predicting the biogeochemical evolution of water reservoirs affected by Acid Mine Drainage (AMD). This work uses the relationships between specific conductivity (SC) and dissolved elements to calculate the metal load of the River Meca, a tributary of the Odiel. The SC and the water level were continuously monitored from April 2009 to June 2010. Water samples were also collected and measurements of the discharge were carried out manually once a month. The relationships between the SC and the concentration of dissolved elements are, in general, very good (R2 > 0.90). However, some key elements such as Fe show a very poor correlation. A simple methodology based on the MIX code (a maximum likelihood method to estimate mixing ratios) was used to elucidate their different behaviours. During the dry period (April–December, 2009) the Fe concentration was lower than that deduced from the SC recorded value due to the precipitation of Fe-oxihydroxides, which also reduced the concentrations of As, Cr, Pb and, to a lesser extent, Cu. At the same time Na, Sr, Ca and Li were enriched because of the higher interaction with the riverbed materials. Correlations between the SC and the metal concentration improved significantly when each period was considered separately. A second dry period (April–June 2010) shows high SC values, although no dissolution/precipitation of solid phases is evidenced. This indicates that SC alone is not enough to predict the dissolved metal loads in Mediterranean AMD streams. The metal load transported by the River Meca was determined for the hydrological year 2009/10 as 1933 ± 129 tonnes of Fe, 990 ± 155 of Al and 378 ± 41 of Zn.  相似文献   

8.
The role of the major biogeochemical processes in Hg cycling at the sediment–water interface was investigated in the Grado Lagoon (Northern Adriatic Sea). This wetland system has been extensively contaminated from the Idrija Hg Mine (Slovenia) through the Isonzo River suspended load carried by tidal fluxes. Three approaches were used to study the sediment–water exchange of total Hg (THg), methylmercury (MeHg), reactive Hg (RHg) and dissolved gaseous Hg (DGHg): (1) estimation of diffusive fluxes from porewater and overlying water concentrations, (2) measurements of benthic fluxes using a deployed light benthic chamber in situ and (3) measurements of benthic fluxes during oxic–anoxic transition with a laboratory incubation experiment. The THg solid phase, ranging between 9.5 and 14.4 μg g−1, showed slight variability with depth and time. Conversely, MeHg contents were highest (up to 21.9 ng g−1) at the surface; they tended to decrease to nearly zero concentration with depth, thus suggesting that MeHg production and accumulation occur predominantly just below the sediment–water interface. Porewater MeHg concentrations (0.9–7.9 ng L−1, 0.15–15% of THg) varied seasonally; higher contents were observed in the warmer period. The MeHg diffusive fluxes (up to 17 ng m−2 day−1) were similar to those in the nearby Gulf of Trieste [Covelli, S., Horvat, M., Faganeli, J., Brambati, A., 1999. Porewater distribution and benthic flux of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar. Coast. Shelf Sci. 48, 415–428], although the lagoon sediments contained four-fold higher THg concentrations. Conversely, the THg diffusive fluxes in the lagoon (up to 110 ng m−2 day−1) were one- to two-fold higher than those previously estimated for the Gulf of Trieste. The diurnal MeHg benthic fluxes were highest in summer at both sites (41,000 and 33,000 ng m−2 day−1 at the fishfarm and in the open lagoon, respectively), thus indicating the influence of temperature on microbial processes. The diurnal variations of dissolved THg and especially MeHg were positively correlated with O2 and inversely with DIC, suggesting an important influence of benthic photosynthetic activities on lagoon benthic Hg cycling, possibly through the production of organic matter promptly available for methylation. The results from the dark chamber incubated in the laboratory showed that the regeneration of dissolved THg was slightly affected by the oxic–anoxic transition. Conversely, the benthic flux of MeHg was up to 15-fold higher in sediments overlain by O2 depleted waters. In the anoxic phase, the MeHg fluxes proceeded in parallel with Fe fluxes and the methylated form reached approximately 100% of dissolved THg. The MeHg is mostly released into overlying water (mean recycling efficiency of 89%) until the occurrence of sulphide inhibition, due to scavenging of the available Hg substrate for methylation. The results suggest that sediments in the Grado Lagoon, especially during anoxic events, should be considered as a primary source of MeHg for the water column.  相似文献   

9.
王瑶  吴胜兴  沈德建  周继凯 《岩土力学》2012,33(5):1319-1326
骨料-砂浆界面过渡区的力学性能对混凝土宏观受力特性有很重要的影响。在MTS试验机上对40个砂浆-花岗岩交界面试件进行了动态轴向拉伸力学性能试验研究,分析不同应变率(10-6~10-2 s-1)、不同程度预静载(30%、50%、70%静载强度)以及往复荷载(1、5 Hz)对交界面动态轴向拉伸力学性能的影响,并对其动态破坏机制进行了初探。研究结果表明:①交界面动抗拉强度随应变率增加有明显增加趋势;②较小预静载(不超过50%)不仅没有使动抗拉强度降低,反而有可能提高动抗拉强度,较大的预静载对损伤弱化效应起主导作用,从而使动抗拉强度降低;③往复荷载作用下会出现明显的低周疲劳损伤,而且残余变形随往复荷载的频率增加而减小;④不同应变率下的交界面应力-应变曲线上升段类似,约50%强度后呈现非线性变化,但非线性程度随应变率增加趋向不明显。另外,尝试性地进行了交界面试件轴向拉伸应力-应变全曲线的试验,得到了稳定断裂的全过程曲线。  相似文献   

10.
Fifty soil samples collected from agricultural land in four regions of Poland with different anthropopressure were analysed for their content of 16PAHs by GC/MS. The regions correspond to Polish administrative units (voievodeships): Podlaskie and Lubelskie are situated in the rural East part of the country and more industrialised Slaskie and Dolnoslaskie voievodeships – in the South-West part. Basic physicochemical properties as well as the content of selected potentially harmful metals (Pb and Zn) were included in the soil analysis. Overall accumulation of Σ16PAHs in the upper soil layer was within the range 73–1800 μg kg−1 with a geometric mean (GM) of 252 μg kg−1, while the mean benzo(a)pyrene (BaP) load was 20 μg kg−1. This corresponds with data for other European countries. Carcinogenic compounds contributed nearly in 50% to the total PAHs loads. In uncontaminated rural regions the mean Σ16PAHs and BaP contents were 113–159 μg kg−1 and 11–13 μg kg−1, respectively. Regional conditions strongly influenced the accumulation of PAHs ?4-rings, which were highly dependent (over 95%) on local anthropopressure expressed as dust and 4PAHs emission indexes. Soil acidity was the main soil parameter related to the accumulation of higher molecular weight PAHs in soils. In more contaminated regions a significant link between soil OM and PAH loads was noted. The same regions were characterised by associations between PAHs and potentially harmful metals implying common sources of pollution. Those relationships were not observed in the uncontaminated part of the country. The lower molecular weight PAHs contributed to a smaller extent (about 20%) to the total PAHs content in soils, and were less affected by anthropogenic factors.  相似文献   

11.
陈建功  陈晓东 《岩土力学》2019,40(12):4590-4596
基于小波函数伸缩平移的特性,建立了能反映锚杆界面黏结?软化?滑动力学特性的剪应力?位移非线性本构模型,克服了三折线软化界面模型需要分段分析的复杂性。结合锚固体荷载传递的力学微分方程,推导了锚杆拉拔荷载?位移曲线的解析表达式,并提出了锚固体位移、轴力、周边剪应力的数值计算方法和步骤。通过算例分析,得到不同张拉位移作用下的锚固段位移、轴力和剪应力分布,获得的锚杆拉拔荷载?位移和锚杆轴向力分布计算值与实测值进行了对比分析,验证了该方法的有效性。该方法能准确地反映锚杆在不同荷载下的传力机制,模拟锚杆从弹性工作状态到塑性滑移的全过程。最后,通过参数分析,得到了锚杆锚固长度、轴向刚度以及锚固界面本构参数对锚固效果的影响规律。  相似文献   

12.
The dynamic response of a mechanically stabilized earth wall to the passing of a high‐speed train is modelled using the finite element method. A three‐dimensional analysis is carried out, using a specific framework that allows performing the analysis with a moderate computational effort. In the first place, a so‐called multiphase approach is used to take into account the reinforcing strips. The moving load is taken into account by performing the calculation in a mobile referential using the properties of symmetry of the train cars and a simplifying assumption of periodicity for the whole train. We also assume a steady state. A partial validation of the approach is obtained by means of a comparison with an analytical solution. The quick increase in displacements induced by the train passing when the speed comes close to the celerity of Rayleigh waves clearly appears in the results. The vertical displacements, vertical stresses in the backfill, tensile forces in the strips and the influence of the stiffness of the soil are discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
深部岩体工程中,锚杆在围岩变形后处于高承载应力状态,受到爆破振动、矿震等动载荷作用后极易失效,因此,亟待研究动力扰动下锚杆的力学响应机制。基于SHPB试验平台,自行研发了一套研究锚杆动力响应的试验装置,开展动力扰动下全长黏结锚杆的力学响应特性研究。结果表明:初始动载荷作用下锚杆滑移量随着入射能的增加而增加,锚杆中应力波的波峰值随着传播距离的增加而逐渐减小,当应力波传播至锚杆最里端时,应力波峰值衰减较大;第2次动载荷后锚杆SG1处与SG2处应力波峰值差明显比第1次减小,表明动载荷下锚固界面从锚杆外端开始损伤;锚杆失效与锚固界面损伤有关,锚杆承载后初次受到动载荷的影响导致锚固界面产生损伤,损伤锚固段又受到外部载荷(如二次冲击、岩体挤压)作用时会进一步劣化,其不能抵抗围岩的变形而失效。研究结果为揭示锚杆支护失效行为,采取合理的设计与施工提供新的思路。  相似文献   

14.
This paper presents a three‐dimensional finite element analysis of the response of battered piles to the combined lateral and vertical pullout loads. Analyses are carried out using an elastoplastic constitutive law based on the non‐associated Mohr–Coulomb criterion. The influence of the contact condition at the pile–soil interface is also investigated. Analyses show that the load's inclination with regard to the pile's axis affects both the lateral and axial response of the battered piles. Analyses also show that the pullout capacity of battered piles is affected by the pile's inclination regarding the vertical axis as well as the load's inclination regarding the pile's axis. The investigation of the influence of the contact condition at the soil–pile interface shows that the possibility of sliding at the soil–pile interface affects the response of battered piles subjected to loads with low inclination regarding the pile's axis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Germanium-silicon (Ge/Si) ratios were determined on quartz diorite bedrock, saprolite, soil, primary and secondary minerals, phytolith, soil and saprolite pore waters, and spring water and stream waters in an effort to understand Ge/Si fractionation during weathering of quartz diorite in the Rio Icacos watershed, Puerto Rico. The Ge/Si ratio of the bedrock is 2 μmol/mol, with individual primary mineral phases ranging between 0.5 and 7 μmol/mol. The ratios in the bulk saprolite are higher (∼3 μmol/mol) than values measured in the bedrock. The major saprolite secondary mineral, kaolinite, has Ge/Si ratios ranging between 4.8 and 6.1 μmol/mol. The high Ge/Si ratios in the saprolite are consistent with preferential incorporation of Ge during the precipitation of kaolinite. Bulk shallow soils have lower ratios (1.1-1.6 μmol/mol) primarily due to the residual accumulation of Ge-poor quartz.Ge/Si ratios measured on saprolite and soil pore waters reflect reactions that take place during mineral transformations at discrete depths. Spring water and baseflow stream waters have the lowest Ge/Si ratios (0.27-0.47 μmol/mol), reflecting deep initial weathering reactions resulting in the precipitation of Ge-enriched kaolinite at the saprolite-bedrock interface. Mass-balance calculations on saprolite require significant loss of Si and Al even within 1 m above the saprolite-bedrock interface. Higher pore water Ge/Si ratios (∼1.2 μmol/mol) are consistent with partial dissolution of this Ge-enriched kaolinite. Pore water Ge/Si ratios increase up through the saprolite and into the overlying soil, but never reach the high values predicted by mass balance, perhaps reflecting the influence of phytolith recycling in the shallow soil.  相似文献   

16.
尤红兵  赵凤新  李方杰 《岩土力学》2009,30(10):3133-3138
利用间接边界元方法,在频域内求解了层状场地中局部不均体对平面P波的散射。利用精确的土层动力刚度矩阵进行自由场反应分析,求得位移和应力响应。通过计算虚拟分布荷载的格林影响函数,求得相应位移和应力;根据边界条件确定虚拟分布荷载,最终得到问题的解答。研究了入射P波时,不均体宽度、埋深、厚度、入射角、入射频率度等参数对地表位移幅值的影响,并与相应自由场的结果进行了比较。不均体对P波散射有重要影响,在工程场地地震安全性评价中,应合理考虑局部不均体对场地设计地震动参数确定的影响。  相似文献   

17.
孟上九  李想  孙义强  程有坤 《岩土力学》2018,39(4):1377-1385
利用光纤光栅开展了为期两年的季冻土路基永久变形现场监测,考虑了不同场地、不同时段、不同轴载组合对永久变形的影响。监测结果显示:(1)受气温影响,路基温度在正冻期和正融期随时间呈振荡线性变化,在一个冻融循环内,市区监测场地埋深30 cm和75 cm位置,地温变化范围分别为-9.0~14.4 ℃和-1.9~15.4 ℃,且随深度增加地温对气温的响应逐渐减弱,滞后性增强;(2)两个监测场地,当路基处于完全冻结状态时,车辆作用下的永久变形均较小,但在正融期,同样车重作用下路基永久变形增大,最大变形是冻结期的4.5倍,是融化期的4.2倍;(3)路基经历了两次冻融循环后,变形仍未稳定,在重载车辆作用下其永久变形仍不可忽视;(4)以轴重40 kN车辆引起的路基最大永久变形为基准,轴重80 kN及250 kN车辆引起的实测永久变形分别增大17倍及215倍,永久变形与轴重非线性关系明显;(5)冻融和重载叠加作用会产生最不利组合,放大路基永久变形,对此需特别关注。  相似文献   

18.
In the present study an analytical procedure based on finite element technique is proposed to investigate the influence of vertical load on deflection and bending moment of a laterally loaded pile embedded in liquefiable soil, subjected to permanent ground displacement. The degradation of subgrade modulus due to soil liquefaction and effect of nonlinearity are also considered. A free headed vertical concrete elastic nonyielding pile with a floating tip subjected to vertical compressive loading, lateral load, and permanent ground displacement due to earthquake motions, in liquefiable soil underlain by nonliquefiable stratum, is considered. The input seismic motions, having varying range of ground motion parameters, considered here include 1989 Loma Gilroy, 1995 Kobe, 2001 Bhuj, and 2011 Sikkim motions. It is calculated that maximum bending moment occurred at the interface of liquefiable and nonliquefiable soil layers and when thickness of liquefiable soil layer is around 60% of total pile length. Maximum bending moment of 1210 kNm and pile head deflection of 110 cm is observed because of 1995 Kobe motion, while 2001 Bhuj and 2011 Sikkim motions amplify the pile head deflection by 14.2 and 14.4 times and bending moment approximately by 4 times, when compared to nonliquefiable soil. Further, the presence of inertial load at the pile head increases bending moment and deflection by approximately 52% when subjected to 1995 Kobe motion. Thus, it is necessary to have a proper assessment of both kinematic and inertial interactions due to free field seismic motions and vertical loads for evaluating pile response in liquefiable soil.  相似文献   

19.
Estimates of glacial sediment delivery to the oceans have been derived from fluxes of meltwater runoff and iceberg calving, and their sediment loads. The combined total (2900 Tg yr−1) of the suspended sediment load in meltwaters (1400 Tg yr−1) and the sediment delivered by icebergs (1500 Tg yr−1) are within the range of earlier estimates. High-resolution microscopic observations show that suspended sediments from glacial meltwaters, supraglacial, and proglacial sediments, and sediments in basal ice, from Arctic, Alpine, and Antarctic locations all contain iron (oxyhydr)oxide nanoparticles, which are poorly crystalline, typically ∼5 nm in diameter, and which occur as single grains or aggregates that may be isolated or attached to sediment grains. Nanoparticles with these characteristics are potentially bioavailable. A global model comparing the sources and sinks of iron present as (oxyhydr)oxides indicates that sediment delivered by icebergs is a significant source of iron to the open oceans, beyond the continental shelf. Iceberg delivery of sediment containing iron as (oxyhydr)oxides during the Last Glacial Maximum may have been sufficient to fertilise the increase in oceanic productivity required to drawdown atmospheric CO2 to the levels observed in ice cores.  相似文献   

20.
Based on the correlation between discharge and carbonate content of the suspended load of the River Rhine, Germany, a systematic geochemical, mineralogical and granulometric study was carried out to verify whether this geochemical signal is transferred to floodplain deposits and in what way these sediments and their chemostratigraphic characterization can be used as a tool for the reconstruction of the river flood history. The analysis of the time resolved changes in the composition of particulate matter during a flood event revealed that the increase of carbonate content (represented by CaO, Sr) with discharge was coupled to a simultaneous decrease in the relative amount of siliciclastics (K2O, Rb). The association of these two groups of diametrical parameters with specific grain size fractions (carbonates with 40–200 μm; siliciclastics with >200 μm) were found to be slightly shifted relative to each other and showed different gradients during the surging and fading flood wave. This, together with the covariance of elements pertaining to minerals with different density (e.g., carbonate and heavy minerals) suggests a chemical response to the changes in discharge, which is controlled primarily by hydraulic equivalence rather than grain size. There is also a time lag between the amount of suspended load and discharge, with a maximum in suspended load shortly after the peak discharge, when the flood has already started to abate. The flood plain sediments have similar composition to the suspended load, suggesting the direct transfer of the geochemical flood signal to the floodplain sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号