首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Japan Trench subduction zone, located east of NE Japan, has regional variation in seismicity. Many large earthquakes occurred in the northern part of Japan Trench, but few in the southern part. Off Miyagi region is in the middle of the Japan Trench, where the large earthquakes (M > 7) with thrust mechanisms have occurred at an interval of about 40 years in two parts: inner trench slope and near land. A seismic experiment using 36 ocean bottom seismographs (OBS) and a 12,000 cu. in. airgun array was conducted to determine a detailed, 2D velocity structure in the forearc region off Miyagi. The depth to the Moho is 21 km, at 115 km from the trench axis, and becomes progressively deeper landward. The P-wave velocity of the mantle wedge is 7.9–8.1 km/s, which is typical velocity for uppermost mantle without large serpentinization. The dip angle of oceanic crust is increased from 5–6° near the trench axis to 23° 150 km landward from the trench axis. The P-wave velocity of the oceanic uppermost mantle is as small as 7.7 km/s. This low-velocity oceanic mantle seems to be caused by not a lateral anisotropy but some subduction process. By comparison with the seismicity off Miyagi, the subduction zone can be divided into four parts: 1) Seaward of the trench axis, the seismicity is low and normal fault-type earthquakes occur associated with the destruction of oceanic lithosphere. 2) Beneath the deformed zone landward of the trench axis, the plate boundary is characterized as a stable sliding fault plain. In case of earthquakes, this zone may be tsunamigenic. 3) Below forearc crust where P-wave velocity is almost 6 km/s and larger: this zone is the seismogenic zone below inner trench slope, which is a plate boundary between the forearc and oceanic crusts. 4) Below mantle wedge: the rupture zones of thrust large earthquakes near land (e.g. 1978 off Miyagi earthquake) are located beneath the mantle wedge. The depth of the rupture zones is 30–50 km below sea level. From the comparison, the rupture zones of large earthquakes off Miyagi are limited in two parts: plate boundary between the forearc and oceanic crusts and below mantle wedge. This limitation is a rare case for subduction zone. Although the seismogenic process beneath the mantle wedge is not fully clarified, our observation suggests the two possibilities: earthquake generation at the plate boundary overridden by the mantle wedge without serpentinization or that in the subducting slab.  相似文献   

2.
Earthquake hypocenters and travel time residuals have been analysed to constrain the geometry and physical state of the subducted Indian plate in the Indo-Burmese convergence zone. A critical analysis of earthquake hypocenters reveals the existence of a non-uniform Benioff zone, progressively shortening from north to south. The deepest level of seismicity is observed beneath the Naga hills (160 km) followed by that under the Chin hills (120 km) and Arakan-Yoma ranges (80 km). The region seems to be devoid of moderate sized shallow (< 40 km) earthquakes. Differential travel time residuals from pairs of shallow and intermediate depth earthquakes recorded at teleseismic distances show significantly faster travel time (up to l.2s) in the north-northeast and south-southwest azimuths, whilst slower arrivals (1.2 to 1.5 s) are recorded in the transverse direction. This observation points to the presence of a high velocity slab possibly linked to the subduction of the Indian oceanic lithosphere.  相似文献   

3.
Relocation of intermediate and deep earthquakes of Tyrrhenian Sea area through joint hypocenter determination for the period 1962–1979, has allowed a more detailed definition of the geometry of this peculiar Benioff zone. Earthquakes dip along a quasi-vertical plane to 250 km depth; there is a 50° dip in the 250–340 km depth range, and a low dip angle to 480 km depth. The structure sketched from the hypocenters is almost continuous, but most energy has been released in the 230–340 km depth interval. An evaluation of fault plane solutions of intermediate earthquakes in this area indicates predominance of down-dip compressions in the central part of the slab. At the border, strike-slip motion occurs independent of depth. Some earthquakes that occurred at intermediate depth (less than 100 km) along the Ionian margin of Calabria show predominance of reverse faulting, with the P-axis oriented SE-NW. However, shallow earthquakes in the Calabria-Sicily region indicate a more complex motion, with predominance of normal faulting. A possible interpretation of these features according to the available geological history, which involves subduction of continental lithosphere, is discussed.  相似文献   

4.
The Burmese Arc seismic activity is not uniform for its ∼ 1100 km length; only the Northern Burmese Arc (NBA) is intensely active. Six large earthquakes in the magnitude range 6.1–7.4 have originated from the NBA Benioff zone between 1954–2011, within an area of 200 × 300 km2 where the Indian plate subducts eastward to depths beyond 200 km below the Burma plate. An analysis on seismogenesis of this interplate region suggests that while the subducting lithosphere is characterized by profuse seismicity, seismicity in the overriding plate is rather few. Large earthquakes occurring in the overriding plate are associated with the backarc Shan-Sagaing Fault (SSF) further east. The forecasting performance of the Benioff zone earthquakes in NBA as forerunner is analysed here by: (i) spatial earthquake clustering, (ii) seismic cycles and their temporal quiescence and (iii) the characteristic temporal b-value changes. Three such clusters (C1–C3) are identified from NBA Benioff Zones I & II that are capable of generating earthquakes in the magnitude ranges of 7.38 to 7.93. Seismic cycles evidenced for the Zone I displayed distinct quiescence (Q1, Q2 and Q3) prior to the 6th August 1988 (M 6.6) earthquake. Similar cycles were used to forecast an earthquake (Dasgupta et al. 2010) to come from the Zone I (cluster C1); which, actually struck on 4 February 2011 (M 6.3). The preparatory activity for an event has already been set in the Zone II and we speculate its occurrence as a large event (M > 6.0) possibly within the year 2012, somewhere close to cluster C3. Temporal analysis of b-value indicates a rise before an ensuing large earthquake.  相似文献   

5.
Seismotectonics of Taiwan   总被引:3,自引:0,他引:3  
High-quality seismicity data and focal mechanism solutions obtained during 1973–1983 by the permanent Taiwan Telemetered Seismographic Network and several temporary local seismographic networks are used for a detailed study of the seismotectonics of the Taiwan area. Seismicity distribution in southern Taiwan clearly reveals an east-dipping Benioff zone which has a thickness of about 30 km and begins to deepen along 121°E at a dip angle of 55°–60°. The leading edge of this Benioff zone reaches a depth of about 180 km between 21°N and 22°N, but tapers off to a shallower depth of about 100 km from 22°N to 23°N. The presence of this seismic zone implies that subduction of the South China Sea plate under the Philippine Sea plate extends from Luzon northward to about 23°N. The position of the northern boundary of the South China Sea plate, as tentatively defined according to the seismicity distribution, passes through southern Taiwan from the offshore area in the Taiwan Strait west of Kaohsiung in an east-northeast direction to the Taitung area where a triple junction probably lies. Seismicity is found to disappear abruptly below a certain depth in many parts of Taiwan. This phenomenon may be attributed to the frictional to quasiplastic transition in the crust or upper mantle. Comparison of shallow seismicity with surface faults and fractures shows that all areas of active shallow seismicity are marked by densely-developed faults and fractures. However, the converse is not necessarily true. This may be partly due to the relatively short duration of seismicity data and partly due to excessive weakening of some of the severely faulted and fractured areas. Finally, focal mechanism solutions for west central Taiwan and the Kuangfu-Fuli area in eastern Taiwan predominantly show a maximum horizontal compression in the SE-NW direction which can be related to collision between the Eurasian and Philippine Sea plates. However, focal mechanism solutions for both the Hualien area in eastern Taiwan and the Tainan area in southwestern Taiwan show remarkable irregularities which may result from local tectonic complexities.  相似文献   

6.
Miguel Muoz 《Tectonophysics》2005,395(1-2):41-65
The Wadati–Benioff Zone (WBZ) is an approximate plane defined by earthquakes hypocentres observed in convergent plate boundaries and that usually dips at angles greater than 30°. In some areas of the Andes, where there are gaps in volcanic activity, and where heat flow is abnormally low, this plane in most studies has nearly horizontal dip at a depth of about 75–100 km, and it has been associated to flat subduction of the oceanic lithosphere. This situation has been taken as the present-day analogue of the Laramide orogeny of western North America for which a ‘flat-slab’ episode has been proposed in the past years. In this work, the observed low heat flow in areas of the Andes is assumed to be due to low radiogenic heat generation in geologically old and allochthonous terranes constituting large regions of western South America. On the basis of geotherms obtained for areas of Ecuador, Peru, Chile and Argentina, and of rheological results describing the partition between brittle and ductile regimes, the seismic activity observed both in the lower crust and at depths of about 75–100 km is thoroughly explained. At these depths, earthquakes occur within the subcontinental upper mantle, and then there is no flat WBZ associated to subduction of the oceanic lithosphere. There is evidence from recent seismological observations that the real WBZ lies not horizontally and deeper in the tectonosphere.  相似文献   

7.
《Gondwana Research》2014,26(4):1690-1699
The continental collision between the Indian and Asian plates plays a key role in the geologic and tectonic evolution of the Tibetan plateau. In this article we present high-resolution tomographic images of the crust and upper mantle derived from a large number of high-quality seismic data from the ANTILOPE project in western Tibet. Both local and distant earthquakes were used in this study and 35,115 P-wave arrival times were manually picked from the original seismograms. Geological and geochemical results suggested that the subducting Indian plate has reached northward to the Lhasa terrane, whereas our new tomography shows that the Indian plate is currently sub-horizontal and underthrusting to the Jinsha river suture at depths of ~ 100 to ~ 250 km, suggesting that the subduction process has evolved over time. The Asian plate is also imaged clearly from the surface to a depth of ~ 100 km by our tomography, and it is located under the Tarim Basin north of the Altyn Tagh Fault. There is no obvious evidence to show that the Asian plate has subducted beneath western Tibet. The Indian and Asian plates are separated by a prominent low-velocity zone under northern Tibet. We attribute the low-velocity zone to mantle upwelling, which may account for the warm crust and upper mantle beneath that region, and thus explain the different features of magmatism between southern and northern Tibet. But the upwelling may not penetrate through the whole crust. We propose a revised geodynamic model and suggest that the high-velocity zones under Lhasa terrane may reflect a cold crust which has interrupted the crustal flow under the westernmost Tibetan plateau.  相似文献   

8.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

9.
Subduction zones with deep seismicity are believed to be associated with the descending branches of convective flows in the mantle and are subordinated to them. Therefore, the position of subduction zones can be considered as relatively fixed with respect to the steady-state system of convective flows. The lithospheric plate overhanging a subduction zone (as a rule of continental type) may:
1. (1) either move away from the subduction zone; or
2. (2) move onto it. In the first case extensional conditions originate behind the subduction zone and the new oceanic crust of back-arc basins forms. In the second case active Andean-type continental margins with thickening of the crust and lithosphere are observed.
Behind the majority of volcanic island-arcs, along the boundary with marginal-sea basins, independent shallow seismicity belts can be traced. They are parallel to the main seismicity belts coinciding with the Benioff zones. The seismicity belts frame island-arc microplates. Island-arc microplates are assumed to be a frame of reference to calculate relative movements of the consuming and overhanging plates. Using slip vector azimuths for shallow seismicity belts in the frontal parts of the Kurile, Japan, Izu-Bonin, Mariana and Tonga—Kermadec arcs, the position of the pole of rotation of the Pacific plate with respect to the western Pacific island-arc microplates was computed. Its coordinates are 66.1°N, 119.2°W. From the global closure of plate movements it has been determined that for the past 10 m.y. the Eurasian and Indian plates have been moving away from the Western Pacific island-arc system, both rotating clockwise, around poles at 31.1°N, 164.2°W and 1.3°S, 157.5°W, respectively. This provides for the opening of the back-arc basins. At the same time South America is moving onto the subduction zone at the rate of 4 cm/yr. Some “hot spots”, such as Hawaiian, Tibesti, and those of the South Atlantic, are moving relative to the island-arc system at a very low rate, viz. 0.5–0.7 cm/yr. Presumably, the western Pacific subduction zone and “hot spots” form a single frame of reference which can generally be used for the analysis of absolute motions.  相似文献   

10.
The role of the lateral structure of the lithospheric mantle in the seismotectonics and seismicity of the southern part of the Russian Far East has been investigated. The positions of the epicenters of all the major earthquakes in Sakhalin (M ≥ 6.0), as well as in the Amur region and the Primorye zones (M ≥ 5.0), are defined by the boundaries of the Anyui block of highly ferruginous mantle, which lies at the base of the Sikhote-Alin area. Three cycles of large earthquakes are recognized in the region: the end of the 19th-beginning of the 20th century, the mid-20th century, and end of the 20th-beginning of the 21st century. In the seismic zone of the Amur region (hereafter, the Amur seismic zone), the epicenters of the large earthquakes in each cycle migrate from the SW to NE along the Tan-Lu fault megasystem at a rate of 30–60 km/yr. The specific features of the seismicity of the region are explained by the repeated arrival of strain waves from the west. The waves propagate in the upper part of the mantle and provoke the activation of the deep structure of the region. The detailed analysis of the earthquakes in the Sikhote-Alin area (M ≥ 4.0) in 1973–2009 confirmed the clockwise tectonic rotation of the mantle block. The characteristics of the Primorye zone of deep-focus seismicity at the Russia-China boundary are stated. Since 1973, 13 earthquakes with M ≥ 6.0 have been recorded in the zone at a depth of 300–500 km. This number of earthquakes is at least twice as many as the number of large deep-focus earthquakes elsewhere in the Sea of Japan-Sea of Okhotsk transition zone. The unique genesis of the Primorye seismic zone is related to the additional compression in the seismofocal area due to the creeping of the Anyui mantle block onto the subduction zone during its rotation. The geodynamic implications of the seismotectonic analysis are examined, and the necessity of division of the Amur plate into three geodynamically independent lithospheric blocks is substantiated.  相似文献   

11.
We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and eastward subduction of Burma microplate.  相似文献   

12.
高山泰 《吉林地质》1990,9(3):61-67
深震等深线加深的梯度方向,反映了板块插入方向和板块俯冲力作用的主体方向;等深线凸进方向的动态变化,反映了贝尼奥夫带的偏转;日本海深源地震和我国东部地区浅震的个体(强震)和群体迁移,反映了深、浅部应力场强区的转移。这种转移的深层原因,可能与上地幔物质流流动方向变化有关。强区范围的圈定和转移规律,对地震的地点预报,具有重要意义。  相似文献   

13.
A new fault-plane solution map of the Italian peninsula is presented in this paper. The earthquakes analyzed are included in the period 1905–1980, with magnitudes ranging 4–7, 75 earthquakes are located in the crust, while 31 are related to the deep and intermediate zone of the Calabrian arc. The large seismic events of the Italian peninsula are generally associated with normal faulting, while strike-slip motion is mostly related to small earthquakes, located along lateral segments of the mountain chain.The deep and intermediate earthquakes of the Tyrrhenian Sea indicate predominant down-dip compression, and strike-slip motion at the boundaries of this Benioff zone. This last is interpreted as a remnant of a subduction zone, active since Oligocene, extending to 500 km depth, with a very small lateral size (about 300 km). The present tectonics of this Benioff zone is strongly conditioned by the lateral bending, more so than the gravitational sinking process.The coexistence of thrust and normal faulting motion associated to the earthquakes, within a few tens of kilometers of each other, seems to be explained by the strong lateral inhomogeneities of the crustal rocks present in this region, more so than to the depth of the seismogenetic zone and the nature of the faulting process.  相似文献   

14.
青藏高原板内地震震源深度分布规律及其成因   总被引:6,自引:0,他引:6  
青藏高原板内地震以浅源地震为主, 下地壳基本上没有地震, 地震震源多集中在15~40 km的深度范围, 主要在中地壳内, 呈似层状弥散分布.其中30~33 km深度是一个优势层, 与壳内分层有关.总体上青藏高原南、北部的震源面略呈相向倾斜特征.70~100 km深度区间出现了比较集中的震级较小的地震, 可能与壳幔过渡带的拆离作用有关.高原内部的正断层系与板内地震密切相关, 是板内浅源地震的主控构造.总之, 青藏高原地震震源沿着活动的上地壳脆性层与软弱层之间的脆-韧性过渡带分布.这些板内地震活动属于大陆动力学过程, 与板块碰撞和板块俯冲无关.初步认为青藏高原浅层到深层多震层的成因分别是韧性基底与脆性盖层、韧性下地壳与脆性上地壳、韧性下地壳与脆性上地幔的韧-脆性转换、拆离和解耦的产物.   相似文献   

15.
The shapes and orientations of Benioff zones beneath island arcs, interpreted as marking the location of subducted lithosphere, provide the best presently available constraints on the global convective flow pattern associated with plate motions. This global flow influences the dynamics of subduction. Subduction zone phenomena therefore provide powerful tests for models of mantle flow. We compute global flow models which, while simple, include those features which are best constrained, namely the observed plate velocities, applied as boundary conditions, and the density contrasts given by thermal models of the lithosphere and subducted slabs. Two viscosity structures are used; for one, flow is confined to the upper mantle, while for the other, flow extends throughout the mantle.Instantaneous flow velocity vectors match observed Benioff zone dips and shapes for the model which allows mantle-wide flow but not for the upper mantle model, which has a highly contorted flow pattern. The effect of trench migration on particle trajectories is calculated; it is not important if subduction velocities are greater than migration rates. Two-dimensional finite element models show that including a coherent high viscosity slab does not change these conclusions. A coherent high viscosity slab extending deep into the upper mantle would significantly slow subduction if flow were confined to the upper mantle. The maximum earthquake magnitude, Mw, for island arcs correlates well with the age of the subducted slab and pressure gradient between the trench and back-arc region for the whole mantle, but not the upper mantle, flow model. The correlations with orientations of Benioff zones and seismic coupling strongly suggest that the global return flow associated with plate motions extends below 700 km. For both models, regions of back-arc spreading have asthenospheric shear pulling the back-arc toward the trench; regions without back-arc spreading have the opposite sense of shear, suggesting global flow strongly influences back-arc spreading.  相似文献   

16.
A large destructive earthquake occurred on December 28, 1974 on the western bank of the Indus River near the village of Pattan. The earthquake reportedly killed 5,300 persons, injured 17,000 and left 60,000 people homeless. A seismicity map of the region is presented for the period January, 1963, to March, 1974 on a Mercator projection. Two main linear trends are recognized on the epicenter map. The northwest trend, beginning at 32.3°N, 76.6°E terminates at the southwest alignment of epicenters beginning at 36.0°N, 73.5°E and ending at 33.0°N, 71.0°E. The Pattan earthquake occurred near the junction of the two linear trends. A fault-plane solution for this earthquake has been determined from an analysis of teleseismic P-wave first-motion and S-wave polarization data. The strike and dip of the two nodal planes are N65°E, 68°SE and N50°E, 23°NW, respectively. The solution is compatible with and indicates underthrusting of the Indian plate in this region in the NNW direction along a thrust zone striking northeast.  相似文献   

17.
Three dimensional P-wave velocity structure beneath the Tohoku district, northeastern Japan arc, is investigated by an inversion of arrival times from local earthquakes using the method originally due to Aki and Lee (1976).In the crust (0–32 km depth) a low-velocity region is found along the volcanic front and its vicinity. Velocities at depths of 32–65 km are low beneath the regions where many Quaternary volcanoes and geothermal areas are distributed. In the region deeper than 65 km, the subduction of the Pacific plate is clearly revealed, and the mantle structure above the descending plate is rather uniform. These features suggest that volcanic activities have relation to the upper mantle structure. The results obtained in this study will be helpful in investigating the mechanism of magma generation in a subduction zone.  相似文献   

18.
Using earthquakes relocated in north‐east Taiwan, we estimated b‐value distribution along a cross‐section located near the Ryukyu slab edge, and four b‐value anomalous areas are evidenced: (1) a high b‐value body lying on top of a low Vp, low Vs and high Vp/Vs sausage‐like body was considered as a region of enhanced partial melt or water supply above which seismicity occurs; (2) beneath the Ilan Plain, an anomalous area characterized by b‐values slightly higher than 1.1 might give evidence to the magma conduits to the Kueishantao Island; (3) above the Ryukyu Wadati‐Benioff zone, at depths ranging from 90 to 110 km, a high b‐value anomaly might correspond to the depth where dehydration occurs in the subducting oceanic plate; and (4) a low b‐value area located within the Ryukyu slab, at depths ranging from 70 to 90 km, might be linked to the compressive mechanisms shown by focal mechanisms and the bending of the subducting plate.  相似文献   

19.
It has been observed that the intensity of underwater gas flares unexpectedly increased after the deep-focus (625.9 km) earthquake that occurred in the Sea of Okhotsk on August 14, 2012. In this regard, we have analyzed the data resulting from interpretation of the focal mechanism for the strike-slip earthquakes which occurred in the Benioff seismic zone of the subducting Pacific Plate within the Sea of Okhotsk region over the period from 1977 to 2010. The NNW sinistral and NE dextral faults are found to form a conjugate system due to the WNW stress field. We have established that the dextral faults are mostly common at a depth of about 200 km along the Kuril Islands extension, while the sinistral ones are concentrated in the Nosappu Fracture Zone and traced to the NNW down to a depth of 680 km. The area of the gas flare discharge and gas hydrate accumulations have the same (NNW) direction. Thus, we have revealed that the Nosappu Fracture Zone appears to be a structure which controls fluid fluxes, providing permeability of the subducting slab of the Pacific Plate for ascending fluids from the lower mantle.  相似文献   

20.
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a < 2-km-thick interface at the top of the subducting plate. We show that another zone of reflectors exists east of Vancouver Island that is approximately 8 km thick, and identified as the D reflectors. These overlie the E reflectors; together the two zones define the landward part of the duplex. The combined zones reach depths as great as 50 km. The duplex structure extends for more than 120 km perpendicular to the margin, has an along-strike extent of 80 km, and at depths between 30 km and 50 km the duplex structure correlates with a region of anomalously deep seismicity, where velocities are less than 7000 m s− 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号