首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东山湾海水中Fe(II)和Fe(III)相互转化围隔实验研究   总被引:1,自引:0,他引:1  
根据2008 年8 月与11 月在东山湾海域获得的调查资料对表层水中溶解态Fe(II)和Fe(III)含量、浮游植物叶绿素a、营养元素及其浓度等环境参数进行分析。结果表明, 夏、秋季海水中Fe(II)浓度及其在总溶解铁中所占比例均与浮游植物叶绿素a 呈正相关, 其相关系数分别为0.7959、0.9219。现场围隔实验表明, 海水中总溶解态Fe 含量在24 h 内有较大的变化, 最大减少量达到17.4%。DS2 站点海水中Fe(II)浓度及其在总溶解铁中所占比例随光照强度增加而增加。最高值与初始值相比较, 叶绿素a 较高的DS2 站点海水中Fe(II)浓度增加较叶绿素a 较低的DS5 号站点高0.053μg/L。Fe(II)和Fe(III)加富实验研究了溶解态的Fe(II)和Fe(III)在海水中相互转化。高浓度的Fe(II)在海水中被氧化成Fe(III),海水中浮游植物也会引发光还原作用使Fe(III)还原成Fe(II)。  相似文献   

2.
3.
The presence of organic ligands (L) whose conditional stability constants (KML) are strong enough to allow them to form complexes with copper has been reported in oceanic waters. However, there is no general agreement on the distributional characteristics of such strong ligands in the water column. We present that these inconsistencies are derived from not only different analytical methods employed for their detection but also different oceanographic conditions. In particular, the nature and quantities of detectable natural ligands are affected by what kind of form the ligands are presentin situ in different marine environments, that is, chemical speciation of natural ligands (ligand speciation), which depends strongly on the variations in concentrations of coexisting trace metals. Using published data from observations in the laboratory and the field, we provide limits to the ranges of conditional stability constants of organic ligands for copper, zinc and cadmium that are detectable by the extensively used direct metal-titration method. For example, our model indicates that organic ligands for copper with log KCuL(Cu)>12.4 in surface water and with log KCuL(Cu)>9.9 in deep water might not have been detected because stronger ligands had formed complexes with ambient metalsin situ at a station in the North Pacific. The estimation suggests that there is a basinscale difference in speciation of natural organic ligands and, moreover, that this difference influences metal speciation. It is postulated that comparisons of the occurrence and levels of organic ligands might not be possible among spatially and temporally different observations without reconciliation of the effects of speciation of the ligands, even if an identical method is used in every case.  相似文献   

4.
Different environmental conditions in various nearshore waters dynamically determine the speciation of iron, its solubility, removal and hence bioavailability to phytoplankton. The iron speciation, the impact of phytoplankton blooms and the effects of organic matter on iron speciation and transformation were studied in four different coastal systems: the Trondheim Fjord, Norway, which is a coastal system that is open to a vast riverine impact; Hopevågen, Norway, a pristine coastal basin, which has negligible river and anthropogenic impact; zmir Bay, Turkey, a Mediterranean embayment with heavily polluted eutrophic inner–middle section, and the oligotrophic outer section. In this paper, we compare iron speciation in these different coastal systems. While colloidal iron (ColFe) was the predominant species especially in the Trondheim Fjord and to some degree also in Hopavågen, Chelex labile iron (ClxLFe) and hydrophobic organic-iron complex (HpOFe) were predominate species in both the inner–middle and the outer section of zmir Bay. The impact of phytoplankton blooms on the ClxLFe was significant especially in the Trondheim Fjord, in the inner–middle section of zmir Bay and in Hopevågen.  相似文献   

5.
On voyages in the Iceland Basin in 2007 and 2009, we observed low (ca. 0.1 nM) total dissolved iron concentrations [dFe] in surface waters (<150 m), which increased with depth to ca. 0.2–0.9 nM. The surface water [dFe] was low due to low atmospheric Fe inputs combined with biological uptake, with Fe regeneration from microbial degradation of settling biogenic particles supplying dFe at depth. The organic ligand concentrations [LT] in the surface waters ranged between 0.4 and 0.5 nM, with conditional stability constants (log KFeL) between 22.6 and 22.7. Furthermore, [LT] was in excess of [dFe] throughout the water column, and dFe was therefore largely complexed by organic ligands (>99%). The ratio of [LT]/[dFe] was used to analyse trends in Fe speciation. Enhanced and variable [LT]/[dFe] ratios ranging between 1.6 and 5.8 were observed in surface waters; the ratio decreased with depth to a more constant [LT]/[dFe] ratio in deep waters. In the Iceland Basin and Rockall Trough, enhanced [LT]/[dFe] ratios in surface waters resulted from decreases in [dFe], likely reflecting the conditions of Fe limitation of the phytoplankton community in the surface waters of the Iceland Basin and the high productivity in the Rockall Trough.Below the surface mixed layer, the observed increase in [dFe] resulted in a decrease of the [LT]/[dFe] ratios (1.2–2.6) with depth. This indicated that the Fe binding ligand sites became occupied and even almost saturated at enhanced [dFe] in the deeper waters. Furthermore, our results showed a quasi-steady state in deep waters between dissolved organic Fe ligands and dFe, reflecting a balance between Fe removal by scavenging and Fe supply by remineralisation of biogenic particles with stabilisation through ligands.  相似文献   

6.
Monosaccharides were determined in waters and sediment pore waters from a wide variety of environments and locations. Desalting was performed by electrodialysis and concentrated extracts were analyzed by two forms of liquid chromatography. At least 12 sugars were identified. Glucose and fructose were the dominant monosaccharides in nearly all samples examined. Analyses of over 150 seawater and sediment pore water samples showed that fructose is highly significantly correlated (>0.99) with glucose concentrations. Laboratory kinetic experiments on the epimerization reaction, glucose ? fructose, in sterilized natural seawater in the dark, yielded a forward rate constant, k1, of 1.2 × 10?5 h?1 at 25°C and 1.6 × 10?7 h?1 at 2°C. The approximate time required to attain equilibrium at 25°C was 1.1 y and at 2°C, 15.4 y; the measured equilibrium constant was in the range 0.3–0.4. The actual ratio of fructose to glucose in natural water samples was usually in the range 1.0–1.4/l, independent of the total monosaccharide concentrations, which varied in the samples by a factor of ~100. Several possible explanations for the apparent discrepancy in the determined and found ratios are discussed: the presence of universal, as yet, undiscovered major biological sources for fructose in marine environments; preferential utilization of glucose; preferential incorporation of fructose into or onto inorganic colloids; and preferential formation of fructose-transition metal ion associations.  相似文献   

7.
《Marine Chemistry》1986,18(1):49-57
This work presents analytical evidence supporting the proposition that Pu(V) is the sole or predominant form of oxidized plutonium in natural waters. Two independent methods, the selective adsorption of Pu(VI) by silica gel, and the somewhat less selective coprecipitation of Pu(V) with calcium carbonate, were developed to separate Pu(V) from Pu(VI). Measurements of ambient plutonium in several natural waters by these methods found only Pu(V). In laboratory tracer studies, Pu(VI) was shown to be highly unstable in dilute bicarbonate solution and in Lake Michigan water, reducing in first-order fashion to Pu(V).  相似文献   

8.
A liquid-liquid partition, ligand exchange procedure involving the formation of copper(II) complexes with acetylacetone is presented for the determination of stability constants and concentrations of copper chelators in seawater. Acetylacetone competes with natural ligands for copper, and the equilibrium concentration of the copper acetylacetonate complex is used in speciation calculations. The concentration of the complex is calculated by partitioning a fraction of it into an organic phase and determining the total Cu concentration in that phase by back extracting with acid, and analyzing by flameless atomic absorption spectroscopy. The concentration of Cu acetylacetonate in seawater in equilibrium with the organic phase is calculated from the partition coefficient. The simple, thermodynamically well characterized procedure offers several advantages over previous techniques. Studies using organic free seawater and model ligands show good agreement between experimental and calculated conditional stability constants. Studies from seawater in Biscayne Bay, Florida, indicate two ligand types are present; type 1, K1 = 1.2 × 1012, CL1 = 5.1 × 10−9 M; type 2, K2 = 2.8 × 1010, CL2 = 1.1 × 10−7 M. Speciation is dominated by ligand type 1. Depth profiles of [Cu(II)]free/[Cu(II)]total measured with the procedure at ambient copper concentrations show an increase from < 5 × 10−5 at 50–60 m to > 1 × 10−3 at the surface at two stations off the Florida coast.  相似文献   

9.
The chemical speciation of copper in the estuarine waters of the Vigo Ria was determined by titrations with salicylaldoxime (reverse copper titrations) and with copper (forward titrations). The forward titrations quantified the concentrations of ligands present in excess whereas the reverse titrations demonstrated the presence of low concentrations of very strong binding ligands, approximately matching the copper concentration. The data obtained by the reverse titrations indicated that copper was about 10× stronger bound than data based on the usual forward titrations.The copper concentration in these ria waters was low at 5 nM with a minor mid-estuarine maximum of 8 nM. These copper levels are amongst the lowest reported for estuarine waters and therefore represent uncontaminated waters. The concentration of inorganic copper was very low across the ria at  10–100 fM, except at Bouzas harbour (salinity 35.5) where it was raised to  1 pM due to copper contamination, in waters affected by the port facilities, to total levels of 15 to 20 nM copper, exceeding the concentration of the very strong ligand detected by the reverse titrations.  相似文献   

10.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   

11.
Iron in northern Australian shelf waters was found predominantly in fine (< 0.2 μm) 8-hydroxyquinoline-reactive form or in larger (1.0 μm) particulate form. Partitioning into the larger size fraction dominated during a period of high turbidity following a cyclonic resuspension event. Only a small component of the iron pool reacts rapidly with the strong ferrous binding agent ferrozine. The concentration of the ferrozine-reactive component is strongly dependent on light intensity with maximum concentration observed at peak light intensity. The close correlation between ferrozine-reactive iron concentration and light intensity suggests a fine balance between Fe(III) reduction and Fe(II) oxidation with the steady state concentration observed being strongly influenced by light induced changes in redox kinetics. An observed lack of association between particulate iron concentrations and the concentration of ferrozine-reactive iron suggests that the soluble rather than the particulate iron pool is most influenced by light. The chromophore may be an Fe(III)-organic complex with the strong iron binding ligand that is now recognised to be present in seawater.  相似文献   

12.
New data have extended our understanding of the distribution and behavior of methylgermanium in the environment. Laboratory attempts to induce aerobic methylation with known biological and abiotic methylating agents were unsuccessful; this confirmed previous field observations of methylgermanium's unreactive behavior. However, biomethylation of inorganic germanium was observed in the anaerobic digestor of a sewage treatment plant, which suggested a terrestrial methanogenic source. Attempts to locate such a source in methanogenic swamps and their drainages reveal very low methylgermanium concentrations typical of other remote, pristine rivers. Polluted rivers have monomethylgermanium (MMGe) and dimethylgermanium (DMGe) concentrations 3–100 times higher than those of pristine rivers, which suggests an anthropogenic source of methylgermanium as a result of the synergistic effects of sewage treatment and coal-ash derived inorganic germanium contamination. A new high-precision profile of MMGe and DMGe in the Sargasso Sea shows conservative behavior with no vertical gradients. However, marine anoxic basins have both inorganic germanium enrichment and methylgermanium depletion, which suggests that of marine anaerobic processes are responsible for demethylating marine organogermanium. These results all suggest that methylgermanium is produced on the continents, is unreactive in the open ocean, and is destroyed in marine anoxic environments. The residence time of organogermanium in the sea, based on a continental source (pristine rivers), is at least 1 Ma, consistent with its unreactive nature, its observed distribution in the ocean, and rates of destruction in anoxic basins.  相似文献   

13.
14.
The thermodynamics and kinetics of the H2S system in natural waters have been critically reviewed. Equations have been derived for the solubility and ionization of H2S in water and seawater as a function of salinity, temperature and pressure. Pitzer parameters for the interaction of the major cations (Na+, Mg2+ and Ca2+) with HS have been determined to allow one to calculate values of pK1* in various ionic media. The limited data available for the interaction of trace metals for HS are summarized and future work is suggested.The kinetics of oxidation of H2S have also been examined as a function of pH, temperature, and salinity. The discrepancies in the available data are largely due to the different [O2]/[HS−] ratios used in various studies. Over a limited pH range (6–8) the pseudo first order rate constant for the oxidation is shown to be directly proportional to the activity of HS. Further studies are suggested to examine the effect of ionic media and temperature on the rate of oxidation.  相似文献   

15.
The chemical speciation of Cu and Zn was investigated by voltammetric titration methods in the surface waters (10 m) of the western Black Sea during an Istanbul–Sevastopol cruise conducted in November 1998. Supporting parameters (temperature (T), salinity (S), pH, alkalinity (Alk), suspended particulate matter (SPM) and dissolved and particulate 234Th) were obtained in order to distinguish hydrographic features against involvement of the metals in biogeochemical processes. In the Turkish continental slope region, the cruise track intersected a narrow vein of colder water originating on the western shelf. The core of this cold water vein was characterised by a relatively low salinity, higher specific alkalinity and higher metal (especially Cu) and metal-binding ligand concentrations.A very large portion of Cu (93–99.8%) and Zn (82–97%) was organically complexed. The degree of complexation was highest in shelf waters and lowest in the central gyre. Titration data for Cu were modelled by two classes of organic binding ligands characterised by (CL1=3–12 nM, log K1′=13.1–13.9) and (CL2=20–70 nM, log K2′=9.4–11.2). These ligands occurred mainly in the ‘dissolved’ phase, as defined by 0.4-μm filtration. The stronger Cu-binding ligand seemed to be produced in situ in response to Cu concentration, whereas the weaker Cu-binding ligand appeared to be derived from terrestrial sources and/or reducing shelf sediments. Titration results for Zn were generally represented by one class of ligands (CL1=8–23 nM, log K1′=9.4–10.2), which were almost uniformly distributed between the ‘dissolved’ (78±8%) and the particulate phase (22±8%). The concentration of these strong Zn-binding ligands showed a very good correlation with SPM (r2=0.64), which improved when the dissolved ligands alone were considered (r2=0.78). It is hypothesised that these ligands were produced in situ by the bacterial breakdown of particulate organic matter.  相似文献   

16.
Over this one-year study, the variations of inorganic As species were examined monthly along the salinity gradient of the Penzé estuary (NW France) in relation with different biogeochemical parameters. In most cases, dissolved As exhibited a non-conservative behaviour which resulted from the competition between two major processes. In the upstream section of the estuary, a strong input of both total inorganic As and As(III) occurred. Then, the removal of the same species, under precipitation of iron oxides/oxyhydroxides, was observed in the low-salinity range (S < 10). Using our experimental data, the fluxes of the various As species were estimated for the first time in estuarine waters. Inputs from the river were mainly constituted of particulate As (∼70%). Conversely, dissolved species were predominant in the net fluxes (∼65%) and As(III) accounted for ∼15% of the dissolved net flux.  相似文献   

17.
Microstructure measurements in natural waters: Methodology and applications   总被引:2,自引:0,他引:2  
Modern approaches to microstructure data processing, including wavelet denoising, are discussed. The wavelet procedure is applied to small-scale shear signals before estimating the dissipation rate ε and to the temperature/density profiles used to calculate Thorpe scales. Microstructure data obtained on the Mediterranean shelf of Catalonia are used to illustrate various approaches to the Thorpe displacement calculations. It is suggested that the Weibull probability function is an appropriate model for the Thorpe scale distribution. Microstructure measurements from the upper layer of the Boadella reservoir (Catalonia, Spain) support this finding.A new analytical approximation for the 1D Panchev–Kesich spectrum is deduced and the results of ε computation are compared with spectral fitting by the widely used Nasmyth spectrum. Applying the Kraichnan spectral model to compute ε from temperature spectra in the convective-viscous sub-range is examined as an alternative to the Batchelor spectrum. Microstructure measurements taken in Lake Banyoles (Catalonia, Spain) and in the North Atlantic were used for spectral calculations.Statistical analysis of eddy Kb and thermal Kθ diffusivities measured on a shallow shelf of the Black Sea shows the importance of process-orientated domain averaging of the diffusivities in obtaining good correspondence between Kb and Kθ in active turbulent regions. In weakly turbulent, stratified interior layers, the averaged Kb and Kθ differ significantly, which may point to the inapplicability of isotropic formulae used for ε and temperature dissipation χθ estimates, as well as to a dependence of the mixing efficiency γ on the Richardson number or in some cases on regions of fossil turbulence.  相似文献   

18.
Measurement of the concentrations and physico-chemical states of transuranic elements in natural waters is difficult because of the low levels and the lack of stable elements present for comparison. A sorption technique for sampling transuranic radionuclides from up to 4000 l of water in 3 h is discussed here. Particulate, soluble, and, what is believed to be, colloidal fractions are collected and analyzed separately. The technique has been tested in fresh and salt water for Pu and Am both in the field and in the laboratory and the results are reported. It is a reliable method for measuring the concentrations of Pu and Am in natural waters and simplifies the collection, transport and measurement of large-volume water samples.  相似文献   

19.
The effect of ionic interactions on the kinetics of disproportionation of HO2, and the oxidation of Fe(II) and Cu(I) has been examined. The interactions of O2 with Mg2+ and Ca2+ ions in seawater increases the lifetime by 3–5 times compared to water. The effect of OH on the oxidation of Fe(II) in water and seawater shows a second degree dependence from 5 to 45°C. The effect of salinity on the oxidation of Fe(II) was found to be independent of temperature, while the effect of temperature was found to be independent of salinity. The energy of activation for the overall rate constant was found to be 7 ± 0.5 kcal mol−1.The effect of pH, temperature, salinity and ionic composition on the oxidation of Cu(I) has also been examined. In NaCl solutions from 0.5 to 6 M, the log k for the oxidation was a linear function of pH (6–8) with a slope of 0.2 ± 0.05. The reaction was strongly dependent on the Cl concentration with variation of from 0.3 to 340 min from 0.5 to 6 M Cl. The rates of oxidation of Cu+ and CuCl0 responsible for these effects are dependent upon ionic strength. The energy of activation for the reaction was 8.5–9.9 kcal mol−1 from 0.5 to 6 M. Studies of the oxidation in various NaX salts (X = I, Br and Cl) give rates in the order Cl > Br > I as expected, due to complex formation of Cu+ with X.  相似文献   

20.
Studies carried out on lagoon, coastal and estuarine waters of the Great Barrier Reef region at Townsville have established marked changes in the chemical speciation of cadmium and iron during blooms of the blue-green alga Trichodesmium. Cadmium speciation was monitored using differential pulse anodic stripping voltammetry on unacidified, acidified and ultra-violet irradiated samples. Dissolved and particulate forms of iron were determined by atomic absorption spectrophotometry. It was established that during Trichodesmium blooms, labile forms of cadmium, and dissolved and particulate forms of iron markedly increased, and that these increases occurred during high concentrations of ‘marine humic acid’, associated with the presence of Trichodesmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号