首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为空中水资源的重要组成部分,云在地球水循环过程和气候系统中扮演着重要角色,不同高度的云因其物理特性和动力过程的不同而对人工增水作业具有不同的指示意义. 采用2007年1月至2008年12月的美国宇航局(NASA)云卫星(CloudSat) 2B-CLDCLASS资料,从不同类型云的高度分布特征分析了新疆阿尔泰山、天山和昆仑山区的云水资源情况.结果表明:各个季节三大山区高层云所占比例均较大,在20%以上,其中,天山山区和昆仑山区雨层云所占比例也较大,在15%以上. 三大山区不同云的云顶和云底高度年变化趋势基本一致,昆仑山区各类型云的平均云顶和云底的高度最大,阿尔泰山区的最低.  相似文献   

2.
This paper presents a new algorithm to classify convective clouds and determine their intensity, based on cloud physical properties retrieved from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The convective rainfall events at 15 min, 4 × 5 km spatial resolution from 2006 to 2012 are analysed over northern Algeria. The convective rain classification methodology makes use of the relationship between cloud spectral characteristics and cloud physical properties such as cloud water path (CWP), cloud phase (CP) and cloud top height (CTH). For this classification, a statistical method based on ‘naive Bayes classifier’ is applied. This is a simple probabilistic classifier based on applying ‘Bayes’ theorem with strong (naive) independent assumptions. For a 9-month period, the ability of SEVIRI to classify the rainfall intensity in the convective clouds is evaluated using weather radar over the northern Algeria. The results indicate an encouraging performance of the new algorithm for intensity differentiation of convective clouds using SEVIRI data.  相似文献   

3.
A physical model and two-dimensional numerical method for computing the evolution and spectra of protostellar clouds are described. The physical model is based on a system of magneto-gas-dynamical equations, including ohmic and ambipolar diffusion, and a scheme for calculating the thermal and ionization structure of a cloud. The dust and gas temperatures are determined when calculating the thermal structure of the cloud. The results of computing the dynamical and thermal structure of the cloud are used to model the transfer of continuum and molecular-line radiation in the cloud. Results are presented for clouds in hydrostatic and thermal equilibrium. The evolution of a rotating magnetic protostellar cloud that is compressed starting from a quasi-static equilibrium state is also considered. Spectral maps for optically thick lines of linear molecules are analyzed. The influence of the magnetic field and rotation can lead to a redistribution of angular momentum in the cloud and the formation of a characteristic rotational-velocity structure. As a result, the distribution of the velocity centroid of the molecular lines can acquire an hourglass shape. It is planned in future to use the developed program package and a model for the chemical evolution of clouds to interpret and model in detail observed starless and protostellar cores.  相似文献   

4.
Orography profoundly influences seasonal rainfall amount in several places in south Asia by affecting rain intensity and duration. One of the fundamental questions concerning orographic rainfall is nature of the associated precipitating clouds in the absence of synoptic forcing. It is believed that these clouds are not very deep, however, there is not much information in the literature on their vertical structure. The present study explores the vertical structure of precipitating clouds associated with orographic features in south Asia using data collected with the precipitation radar on board the Tropical Rainfall Measuring Mission satellite. Two types of precipitating clouds have been defined based on cloud echo top height, namely, shallow echo-top cloud and medium echo-top cloud. In both, radar reflectivity factor is at least 30 dBZ at 1.5 km altitude, and tops of shallow and medium echo-top clouds lie below 4.5 km and between 4.5 and 8 km, respectively. The Western Ghats contains the highest fraction of the shallow echo-top clouds followed by the adjacent eastern Arabian Sea, while the Khasi Hills in Meghalaya and Cardamom Mountains in Cambodia contain the least fraction of them. Average vertical profiles of shallow echo-top clouds are similar in different mountainous areas while regional differences are observed in the medium echo-top clouds. Below 3 km, precipitation liquid water content in medium echo-top clouds is the highest over the Western Ghats and the eastern Arabian Sea. The average precipitation liquid water content increases by \(0.16\,\hbox { gm m}^{-3}\) for shallow echo-top clouds between 3 and 1.5 km altitude, while the corresponding increase for medium echo-top clouds is in 0.05–0.08 \(\hbox { gm m}^{-3}\) range.  相似文献   

5.
We describe the formation of carbon dust in binary systems with hot components as a result of the collisions of clouds in a two-phase stellar-wind model. Calculations are made for the well studied system WR 140. The collisions lead to the formation of composite clouds and shock waves, with the temperature at the shock front equal to about 3×108 K along both sides of the interface boundary. During isobaric deexcitation to (0.5–0.7)×104 K, the cloud density increases by a factor of several thousand; its thickness in the direction of the shock decreases by the same factor. After deexcitation, the hydrogen inside the composite cloud is in its atomic state, while the carbon remains ionized. The deexcitation is followed by expansion of the cloud, which moves away from both stars. During the first 106 s, its thickness remains relatively small, so that the expansion is one-dimensional. The radiation field inside the cloud decays, resulting in the recombination of the carbon. Further expansion of the cloud leads to adiabatic cooling, and the formation of dust particles becomes possible. After the dimensions of the cloud have become roughly the same in all directions, its expansion is isotropic, so that it becomes transparent within approximately 106 s, and the dust is heated to (1.0–1.4)×103 K, observed as an IR “lare.” The time required for the cloud to move from the exciting star and heat the dust is comparable to the observed delay in the increased IR emission relative to the time of periastron.  相似文献   

6.
In order to study the scale error of low resolution meteorological satellite cloud detection and its impact on the calculation of downlink radiation, cloud detection using high resolution stationary satellite GF-4 data and error analysis were carried out. Firstly, the cloud detection of GF-4 data is carried out by using visible channel threshold method and time series method, and the error of cloud detection results of Himawari-8 and FY-2 (FY-2G, FY-2E) is analyzed based on the results of GF-4 cloud detection.In the study area, FY-2G, FY-2E and Himawari-8 cloud images could distinguish the clouds and clear sky. The main reason for the error was the scale effect produced by different spatial resolution satellites(the differences caused by cloud detection algorithms are not discussed here).Most of the errors occurred in the areas of thin clouds and broken clouds.High resolution data could detect broken clouds, while low resolution data lead to false and missed detection. On this basis, the error of remote sensing calculation of short wave radiation was analyzed,and it was found that the error of the actual cloud amount in the pixel would bring significant error to the estimation of the downward radiation.The relative error of the instantaneous downward radiation in the selected test area was -173.52%, and the maximum relative error of shortwave radiation was -20.20%.The results show that the high resolution stationary satellite data can significantly improve the estimation accuracy of the downlink shortwave radiation in the regions with more broken clouds.  相似文献   

7.
A model for simulating the thermal and dynamical evolution of protostellar clouds is presented. In the model, the dust and gas temperatures are treated separately, making it possible to more precisely describe the initial stages of the cloud’s gravitational contraction and collapse. The model is fast enough to be applied in hydrodynamical computations, and has a high enough accuracy for the results to be used to compute emission spectra and comparing them with observational data. Two problems are considered as test examples and simple applications: calculation of the structure of clouds in thermal and hydrostatic equilibrium, and modeling the evolution of a protostellar cloud in a spherically symmetric approximation, including the formation of the first hydrostatic core.  相似文献   

8.
Olshansky  Robert  Xiao  Yu  Abramson  Daniel 《Natural Hazards》2020,101(1):1-38

Identifying the spatial extent of volcanic ash clouds in the atmosphere and forecasting their direction and speed of movement has important implications for the safety of the aviation industry, community preparedness and disaster response at ground level. Nine regional Volcanic Ash Advisory Centres were established worldwide to detect, track and forecast the movement of volcanic ash clouds and provide advice to en route aircraft and other aviation assets potentially exposed to the hazards of volcanic ash. In the absence of timely ground observations, an ability to promptly detect the presence and distribution of volcanic ash generated by an eruption and predict the spatial and temporal dispersion of the resulting volcanic cloud is critical. This process relies greatly on the heavily manual task of monitoring remotely sensed satellite imagery and estimating the eruption source parameters (e.g. mass loading and plume height) needed to run dispersion models. An approach for automating the quick and efficient processing of next generation satellite imagery (big data) as it is generated, for the presence of volcanic clouds, without any constraint on the meteorological conditions, (i.e. obscuration by meteorological cloud) would be an asset to efforts in this space. An automated statistics and physics-based algorithm, the Automated Probabilistic Eruption Surveillance algorithm is presented here for auto-detecting volcanic clouds in satellite imagery and distinguishing them from meteorological cloud in near real time. Coupled with a gravity current model of early cloud growth, which uses the area of the volcanic cloud as the basis for mass measurements, the mass flux of particles into the volcanic cloud is estimated as a function of time, thus quantitatively characterising the evolution of the eruption, and allowing for rapid estimation of source parameters used in volcanic ash transport and dispersion models.

  相似文献   

9.
A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.  相似文献   

10.
The zenith sky scattered light spectra were carried out using zenith sky UV-visible spectrometer in clear and cloudy sky conditions during May-November 2000 over the tropical station Pune (18°32′N, 73°51′E). These scattered spectra are obtained in the spectral range 462–498 nm between 75° and 92° solar zenith angles (SZAs). The slant column densities (SCDs) as well as total column densities (TCDs) of NO2, O3, H2O and O4 are derived with different SZAs in clear and cloudy sky conditions. The large enhancements and reductions in TCDs of the above gases are observed in thick cumulonimbus (Cb) clouds and thin high cirrus (Ci) clouds, respectively, compared to clear sky conditions. The enhancements in TCDs of O3 appear to be due to photon diffusion, multiple Mie-scattering and multiple reflections between layered clouds or isolated patches of optically thick clouds. The reductions in TCDs due to optically thin clouds are noticed during the above period. The variations in TCDs of O3 measured under cloudy sky are discussed with total cloud cover (octas) of different types of clouds such as low clouds (C L ), medium clouds (C M ) and high clouds (C H ) during May-November 2000. The variations in TCDs of O3 measured in cloudy sky conditions are found to be well matched with cloud sensitive parameter colour index (CI) and found to be in good correlation. The TCDcloudy are derived using airmass factors (AMFs) computed without considering cloud cover and CI in radiative transfer (RT) model, whereas TCDmodel are derived using AMFs computed with considering cloud cover, cloud height and CI in RT model. The TCDmodel is the column density of illuminated cloudy effect. A good agreement is observed between TCDmodel, TCDDob and TCDGOME.  相似文献   

11.
The effect of the structural irregularity of an interstellar cloud on the dynamics of its disruption by a shock from a supernova is studied. Irregular clouds are disrupted twice as fast as spherical clouds. However, fragments of irregular clouds preserve their enhanced density for long times without being mixed with the intercloud gas. The fraction of shock energy that is converted to the kinetic energy of the fragments is 50% higher than in the disruption of a spherical cloud. Shocks are not able to trigger the gravitational compression of clouds.  相似文献   

12.
The development of an inhomogeneous collapse of an initially homogeneous cloud in pressure equilibrium with an external medium is considered in a general-relativistic treatment. It is shown that a rarefaction wave propagating from the outer boundary toward the center of the cloud forms in the initial stage of the collapse. The rarefaction front moves through the collapsing gas at the sound speed, and separates the cloud material into an inner, uniform core and an outer, inhomogeneous envelope. Our analysis distinguishes two possible collapse regimes, depending on the ratio of the focusing time for the rarefaction wave and the free-fall time for the cloud. In massive clouds, the focusing time for the rarefaction wave exceeds the free-fall time, and the collapse of such clouds inevitably leads to the formation of an event horizon and black hole. In low-mass clouds, the focusing time is less than the free-fall time. After the focusing, the collapse of such clouds is fully inhomogeneous, and can be appreciably slowed by the pressure gradient. The compression of a cloud in a transitional regime separating these two scenarios is studied. In this case, a self-similar collapse regime is realized in the central part of the cloud near the focusing time for the rarefaction wave. The constructed self-similar solution describes both early stages in the compression up to the focusing of the rarefaction wave and later stages with the accretion of gas onto the black hole that is formed. Asymptotic distributions of quantities in the inhomogeneous region at large distances from the rarefaction front and in the accreting envelope are found. The structure of space-time in the vicinity of the black hole that is formed at the center of the cloud as a result of the focusing of the rarefaction wave is discussed.  相似文献   

13.
Cloud types have a substantial influence on precipitation. This paper presents a study of the monthly variations of daytime different cloud types over Iran using data collected from Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra during 2001–2015, MODIS aboard Aqua during 2002–2015, International Satellite Cloud Climatology Project (ISCCP) H-series cloud type data during 2001–2009 and precipitation rate associated with different cloud types using Tropical Rainfall Measuring Mission (TRMM) satellite products during 2001–2009. Different cloud types were determined using MODIS cloud optical thickness and cloud top pressure data based on ISCCP algorithm. The results showed that stratocumulus and cumulus clouds have maximum occurrence frequency over marine areas especially southern seas. The maximum frequency of nimbostratus and deep convective occurrence occurred over mountainous regions particularly at the time of Aqua overpass and cirrus and cirrostratus are observed over southeast of Iran during warm months due to monsoon system. Altostratus cloud is extended in each month except January, at the time of Terra overpass while nimbostratus is seen at the time of Aqua overpass during warm months in the study area. Cumulus and altocumulus clouds have shown remarkable frequency in all months especially over marine regions during warm and fall months. The higher value of precipitation rate is related to altostratus with a rate approximately 7 mm/h at the time of Terra overpass during April. Altostratus has the maximum recorded precipitation rate except in Nov., Dec., Sep., and Jan. at the time of Terra overpass, whereas the maximum precipitation rate is linked to nimbostratus cloud activity (up to 5 mm/h) except for March, April, and Sep. at the time of Aqua overpass. Deep convective (up to 1.32 mm/h), cirrostratus (up to 1.11 mm/h), and cirrus (0.02 mm/h) are observed only in warm months. The results were compared with ISCCP cloud types so that precipitation rate classified from low to high and Spearman rank correlation was calculated. The results showed good agreement between these two cloud type data; however, there were few notable difference between them.  相似文献   

14.
深长变径搅拌桩荷载传递规律的试验研究   总被引:2,自引:0,他引:2  
向玮  刘松玉  经绯  刘志彬 《岩土力学》2010,31(9):2765-2771
采用一种新型的地基处理方式--变径水泥土搅拌桩,处理了浙江省湖州地区深达20多米的深厚软土地基,通过对载荷试验和桩身应力实测资料的分析,研究了深长变径搅拌桩的承载特性和荷载传递机制。研究表明,受到桩身强度的限制,荷载沿桩身传递限定在一定范围内;由于桩径的变化,桩身应力在变截面处出现了应力集中现象;桩身轴力沿深度逐渐衰减,且在变径位置以上桩体衰减速率较下部快;最大侧摩阻力发生在桩顶附近,在变径处附近由于扩大头端承作用而锐减,但变径位置以下一定深度范围内的桩侧摩阻力得到提高;扩大头端承力随桩顶荷载的增加而逐渐变大,但占总荷载的比例不大,桩侧摩阻力仍提供了大部分的承载力,因此变径水泥土搅拌桩属于有支点端承力的摩擦桩。结合3种不同单桩破坏模式,提出了深长变径搅拌桩的单桩极限承载力计算公式,经过试算发现与现场试验结果相差在10%以内,计算结果可靠,可推广应用于实际工程中。  相似文献   

15.
A number of studies have explored the effect of anthropogenic emissions on the development and evolution of precipitation in different types of clouds; however, the magnitude of the effect is still not clear, particularly for the case of deep, mixed-phase clouds. In this study, changes in the parameterization of the autoconversión process were introduced in the Advanced Regional Prediction System (ARPS) model to further evaluate this question. The simulations were initialized with cloud droplet distributions measured from an instrumented C-130 aircraft flying 600-800 km offshore in the intertropical convergence zone during the East Pacific Investigations of Climate (EPIC) project. Two contrasting cases were selected, one with and the other without the influence of anthropogenic aerosols. The simulations indicate that the increased cloud condensation nuclei (CCN) concentrations lead to a delay in the formation of rain and to a decrease in precipitation that reaches the surface as a result of the inhibition of the autoconversion of cloud water to rain water and the subsequent delay in the formation of hail. In addition, hail forms at higher levels in the cloud for the case of anthropogenic CCN. The most important process in the production of rain water in both cases is the melting of hail. A decrease in the mass of hail that falls below the freezing level in the polluted case, leads to a decrease in the resulting precipitation at the surface. Changes in the initial concentration of CCN do not appear to influence the storm strength in terms of updrafts and cloud top height, suggesting little sensitivity of the cloud dynamics. A control case simulation using the old microphysics scheme produces much more precipitation than either of the clean and polluted cases. In addition, the clean case with the modified parameterization shows a better agreement to observations than the control case. It is suggested to use the new scheme to simulate deep convective development over tropical maritime regions.  相似文献   

16.
Radio beacon from ATS-6 at 140 MHz was used to measure the changes in the polarization angle (Faraday rotation) at Bombay, Rajkot, Ahmedabad, Udaipur and Patiala during October 1975 to July 1976. In this paper, results of diurnal, seasonal and latitudinal variations in total electron content (TEC) derived from these measurements are reported. The amplitude of diurnal peak is found to be higher at Rajkot, Ahmedabad and Udaipur as compared to that at Patiala or Bombay, indicating that the peak of Appleton anomaly in the latitudinal variation of TEC was close to the latitude of Ahmedabad. The diurnal maximum of TEC occurs around the same time during summer and winter months. The peak electron content shows a semiannual variation at all the stations with large values in equinoxes as compared to winter and summer. The TEC at Bombay shows a seasonal anamoly with high values in winter as compared to summer. The paper describes the development of latitudinal anomaly with the time of the day for different seasons. This anomaly is maximum during 1000 to 1800 LT and is located between 12° and 14° N (dip latitude) in summer and equinoxes and at about 10°N in winter.  相似文献   

17.
利用2006—2010年夏季6~8月CloudSat资料对念青唐古拉峰地区云水分布和云类型特征进行分析,从而为研究高原天气过程与其水循环过程的相互作用提供理论依据。结果表明,云水含量垂直分布结构与云类型有关,而冰川区和非冰川区云类型差异主要为降水云类型不同,其中有冰川覆盖的高山上空降水云以深厚对流云为主,无冰川覆盖的高山降水云类型以雨层云为主。念青唐古拉峰南坡冰川区云水平均含量为0.14 g/m3,非冰川区云水平均含量为0.18 g/m3,一定程度说明来自孟加拉湾的水汽在经过冰川附近时,多会产生降水,反映了冰川对水汽传输的阻碍作用。  相似文献   

18.
Profiles of variable emission lines in the spectra of Wolf-Rayet stars are calculated using a stochastic cloud model for the inhomogeneous atmospheres of early-type stars. The model assumes that most of the line flux is formed in cold, dense condensations (clouds) that move through a rarified inter-cloud medium whose density monotonically decreases outwards. The formation of clouds is taken to be stochastic. Wavelet analysis is used to estimate the parameters of cloud ensembles. The model can reproduce the general pattern of line-profile variability observed in the spectra of Wolf-Rayet stars.  相似文献   

19.
A critical factor in successfully monitoring and forecasting volcanic ash dispersion for aviation safety is the height reached by eruption clouds, which is affected by environmental factors, such as wind shear and atmospheric instability. Following earlier work using the Active Tracer High Resolution Atmospheric Model for strong Plinian eruptions, this study considered a range of eruption strengths in different atmospheres. The results suggest that relatively weak volcanic eruptions in the moist tropics can trigger deep convection that transports volcanic material to 15–20 km. For the same volcanic strength there can be ~9 km difference between eruption heights in moist tropical and dry subpolar environments (a larger height difference than previously suggested), which appears consistent with observations. These results suggest that eruption intensity should not be estimated from eruption height alone for tropospheric eruptions and also that the average height of volcanic eruptions may increase if the tropical atmospheric belt widens in a changing climate. Ash aggregation is promoted by hydrometeors (particularly liquid water), so the smaller modelled eruptions in moist atmospheres, which have a relatively small ash content for their height and water content, result in a relatively small proportion of fine ash in the dispersing cloud when compared to a dry atmosphere. This in turn makes the ash clouds much more difficult to detect using remote sensing than those in dry atmospheres. Overall, a weak eruption in the tropics is more likely to produce a plume above cruising levels for civil aviation, harder to detect and track, but with a lower concentration of fine ash than a mid-latitude or polar equivalent. There is currently no defined ‘acceptable’ concentration of ash for aircraft, but as these results suggest low-grade encounters in the tropics from undetected clouds are likely, it would be desirable to explore that issue.  相似文献   

20.
新疆山区低层云水资源时空分布特征   总被引:3,自引:0,他引:3       下载免费PDF全文
采用云与地球辐射能量系统(CERES)2003~2007年的CERESSSF Aqua MODIS云资料,选取新疆阿尔泰山、天山和昆仑山三大山区,通过考察云量和云液态水柱含量分析了低层云水资源的多年空间分布和季节变化特征。结果表明,三大山区多年平均的云量年平均区域值在24.4%~27.5%之间,云液态水柱含量在51~56.3g/m2之间。三大山区低层云量和云液态水柱含量有明显的季节变化特征。综合云量和云水柱含量来看,春季是三大山区低层云量资源最丰富的季节,冬季是三大山区低层云中的含水量最丰富的季节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号