首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Twenty-five crude-oil-degrading bacteria were isolated from oil-contaminated sites in the Persian Gulf and the Caspian Sea. Based on a high growth rate on crude oil and on hydrocarbon degradation ability, 11 strains were selected from the 25 isolated strains for further study. Determination of the nucleotide sequence of the 16S rRNA gene showed that these isolated strains belonged to genera Acinetobacter, Pseudomonas, Gordonia, Rhodococcus, Cobetia, Halomonas, Alcanivorax, Marinobacter and Microbacterium. Among the 11 isolates, strains BS (Acinetobacter calcoaceticus, 98%) and PG-12 (Alcanivorax dieselolei, 98%) were the most effective in degrading crude oil. Rate of crude-oil degradation of 82% (isolate BS) and 71% (isolate PG-12) were observed after 1 week of cultivation in mineral medium. These strains had high emulsification activity and biosurfactant production. GC-MS analysis showed that A. dieselolei PG-12 can degrade different alkanes in crude oil. Screening of the distribution of the alkane hydroxylase gene in 25 isolates in relation to the source of isolation indicated that the group (II) alkane hydroxylase is prevalent in the Caspian Sea, but in the Persian Gulf, the frequency of the group (III) alkane hydroxylase gene is greater than that of the group (II) alkane hydroxylase gene.  相似文献   

2.
Hydrocarbon degraders from tropical marine environments   总被引:1,自引:0,他引:1  
Analysis of 20 samples of marine mud and water around Mumbai resulted in the isolation of 17 bacteria and yeasts all of which were able to degrade more than 10% of the supplied crude oil. The yeasts strains were important degraders of the aliphatic fraction of crude. All the isolated yeasts belonged to the genus Candida. Using biochemical tests these were identified as Candida parapsilosis, C. albicans, C. guilliermondii, Yarrowia lipolytica, C. tropicalis and C. intermedia. Y. lipolytica was the best degrader utilizing 78% of the aliphatic fraction of Bombay High crude oil. None of these isolates degraded the aromatic or ashphaltene fractions. All the isolates required aeration, nitrogen and phosphate supplementation for optimal degradation. Four out of the six yeasts are human pathogens.  相似文献   

3.
The composition and spatial distribution of various petroleum hydrocarbons (PHs), comprising both aliphatic and polycyclic aromatic hydrocarbons (PAHs), and selected chlorinated pesticides and PCBs were measured in biota and coastal sediments from seven countries in the Persian Gulf and the Gulf of Oman (Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Evidence of extensive marine contamination with respect to organochlorinated compounds and PHs was not observed. Only one site, namely the BAPCO oil refinery in Bahrain, was considered to be chronically contaminated. Comparison of the results from this survey for Σ DDTs and Σ PCBs in rock oysters from the Gulf of Oman with similar measurements made at the same locations over the past two decades indicates a temporal trend of overall decreasing Σ PCB concentrations in oysters, whereas Σ DDTs levels have little changed during that period.  相似文献   

4.
The fluorescence EEM technique, PARAFAC modeling, and hydrocarbon composition were used to characterize oil components and to examine the chemical evolution and degradation pathways of Macondo crude oil under controlled laboratory conditions. Three major fluorescent oil components were identified, with Ex/Em maxima at 226/328, 262/315, and 244/366 nm, respectively. An average degradation half-life of ~20 d was determined for the oil components based on fluorescence EEM and hydrocarbon composition measurements, showing a dynamic chemical evolution and transformation of the oil during degradation. Dispersants appeared to change the chemical characteristics of oil, to shift the fluorescence EEM spectra, and to enhance the degradation of low-molecular-weight hydrocarbons. Photochemical degradation played a dominant role in the transformation of oil components, likely an effective degradation pathway of oil in the water column. Results from laboratory experiments should facilitate the interpretation of field-data and provide insights for understanding the fate and transport of oil components in the Gulf of Mexico.  相似文献   

5.
Oil-degrading bacteria isolated from oil spills, an industrial bay, and an offshore oil field by liquid enrichment on crude oils and polynuclear aromatic hydrocarbon compounds were screened for extra-chromosomal DNA. Plasmids were detected in 21% of the strains isolated on whole crude oil and in 17% of the strains isolated on polynuclear aromatic hydrocarbons. Multiple plasmids were observed in 50% of the plasmid-containing strains. Pseudomonas was the predominant genus isolated during the study. Plasmids do not appear to be of importance to these strains during degradation of freshly introduced oil at a nonpolluted site such as might be the case in an ocean oil spill. Plasmids do appear to be significant in the adaptation of Pseudomonas species to chronic petroleum pollution.  相似文献   

6.
A massive oil spill affected approximately 215 km of coastline as a result of the grounding and subsequent explosion of the supertanker Urquiola at the entrance to the harbour at La Coruña, Spain, on 12 May 1976. A total of 99–100 000 tons of Persian Gulf crude oil was lost, most of which burned, but an estimated 25–30 000 tons washed ashore. Over 2000 tons of dispersants were applied to the oil at sea. Land-based clean-up and control methods were largely inadequate to combat the spread of oil, and were ineffective at preventing large scale environmental damage.  相似文献   

7.
A preliminary study was undertaken to determine the optimal conditions for the biodegradation of a crude oil. Among 57 oil‐degrading bacterial cultures isolated from oil‐contaminated soil samples, Bacillus sp. IOS1‐7, Corynebacterium sp. BPS2‐6, Pseudomonas sp. HPS2‐5, and Pseudomonas sp. BPS1‐8 were selected for the study based on the efficiency of crude oil utilization. Along with the selected individual strains, a mixed bacterial consortium prepared using the above strains was also used for degradation studies. The mixed bacterial consortium showed more growth and degradation than did individual strains. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 77% of the crude oil. This was followed by 69% by Pseudomonas sp. BPS1‐8, 64% by Bacillus sp. IOS1‐7, 45% by Pseudomonas sp. HPS2‐5, and 41% by Corynebacterium sp. BPS2‐6. The percentage of degradation by the mixed bacterial consortium decreased from 77 to 45% as the concentration of crude oil was increased from 1 to 12%. Temperature of 35°C and pH 7 were found to be optimum for maximum degradation.  相似文献   

8.
Our study examined the effects of Corexit 9500 and sediment on microbial mineralization of specific aliphatic and aromatic hydrocarbons found in crude oil. We also measured gross mineralization of crude oil, dispersed crude oil and dispersant by a marine microbial consortium in the absence of sediment. When provided as carbon sources, our consortium mineralized Corexit 9500 the most rapidly, followed by fresh oil, and finally weathered oil or dispersed oil. However, mineralization in short term assays favored particular components of crude oil (2-methyl-naphthalene > dodecane > phenanthrene > hexadecane > pyrene) and was not affected by addition of nutrients or sediment (high sand, low organic carbon). Adding dispersant inhibited hexadecane and phenanthrene mineralization but did not affect dodecane and 2-methyl-naphthalene mineralization. Thus, the effect of dispersant on biodegradation of a specific hydrocarbon was not predictable by class. The results were consistent for both high and low oiling experiments and for both fresh and weathered oil. Overall, our results indicate that environmental use of Corexit 9500 could result in either increases or decreases in the toxicity of residual oil through selective microbial mineralization of hydrocarbons.  相似文献   

9.
The composition and spatial distribution of aliphatic and polycyclic aromatic hydrocarbons (PAHs) were investigated in biota and coastal sediments from four countries surrounding the Gulf (Bahrain, Qatar, United Arab Emirates and Oman). The levels of total petroleum hydrocarbons (TPH), aliphatic unresolved mixture and PAHs in sediments and biota were relatively low compared to world-wide locations reported to be chronically contaminated by oil. Only in the case of the sediments collected near the BAPCO oil refinery in Bahrain, having concentrations of 779 μg g−1 total petroleum hydrocarbon equivalents and 6.6 μg g−1 ∑PAHs, can they be categorized as chronically contaminated. Some evidence of oil contamination was also apparent in sediments and bivalves around Akkah Head and Abu Dhabi in the UAE, and near Mirbat in Oman. Contaminant patterns in sediments and biota indicated that the PAHs were mainly from fossil sources, with the exception of the high PAH concentrations in sediments near the BAPCO refinery that contained substantial concentrations of carcinogenic PAH combustion products.  相似文献   

10.
The spatial distribution of aliphatic and polycyclic aromatic hydrocarbons (PAHs) was investigated in sediments from the Cienfuegos bay. The highest anthropogenic hydrocarbon inputs were found near the city of Cienfuegos with an unresolved complex mixture (UCM) of aliphatic hydrocarbons and alkylated PAHs, indicative of petrogenic inputs. Parent PAHs, which are typical of high-temperature combustion processes, were evenly distributed in the whole basin and largely prevailing in the southern part of the Cienfuegos city. Biomarker fingerprints assign the sources of pollution to mixes of national and non-national crude oils. The overall levels of anthropogenic hydrocarbons are relatively high compared to relevant areas worldwide and reveal a moderate/high level of hydrocarbon pollution. The Cienfuegos bay sediments received over a period of 5 yr, 50 T/yr of petrogenic unresolved hydrocarbons (UCM) and 2 T/yr of PAHs, being deposited the 80% in the sediments of the north basin.  相似文献   

11.
Vessel reports of oil slicks in the Persian Gulf and approaches during 1978 show an increase in number and percentage of positive reports towards the Strait of Hormuz. Pronounced seasonal variations in slick characteristics include an increase in number, size and areal coverage during winter, but an increase in thickness of slicks in summer. High solar radiation enhances photolysis, evaporation, solution and bacterial degradation of oil. Slick dispersal patterns agreed with prevailing wind and surface current circulation. Most slicks appeared to represent separate events. Of the ten major slicks, which were all ‘thin’, seven were reported by two out of 84 vessels. Collectively, they contained 73% of all oil in 139 reported slicks. Using an average of 13 μm for the thickness of ‘thin’ slicks, the largest slick contained more than 54 000 m3, and all slicks combined totaled 160 000 m3. Two independent alternate estimates confirm this computation within 10%.  相似文献   

12.
Sediments sampled within bed of the Coatzacoalcos river, Veracruz, Mexico were used as geo-accumulators for the assessment of the status of petroleum pollution in the Coatzacoalcos river. Stable carbon isotope ratios and the composition of aliphatic and aromatic hydrocarbons were determined in order to evaluate the importance of the petrogenic inputs as well as to ascertain their spatial distribution. Molecular markers, namely acyclic isoprenoid hydrocarbons, steranes and hopanes were studied for source identification. As result, high levels of petroleum were found in the whole studied area, with no defined spatial trends, corresponding to an overall pollution by the same type of crude oil products.  相似文献   

13.
Utilizing basic principles and methodologies of geology and organic geochemistry, kinetics of hydrocarbons generation and accumulation, quantitative assessment of crude oils sourced from different source rocks, and hydrocarbons migration pathways for the oils from the Bamianhe Oilfield, the Bohai Bay Basin, Eastern China are discussed. Results of oil-rock correlation showed that the oils were mainly derived from Es4 member (with buried depth >2700 m) of Niuzhuang and Guangli Sags within normal oil window though there is a little amount of mixed immature oils. Quantification of mixed oils with different sources indicated that mature oils account for about 80% of the total oils discovered and immature oils for only 20%. Migration of the oils sourced from the sags is controlled by predominant hydrocarbons migration passages determined by faults, unformalities and favored sandstone reservoir. Results of the origin and migration models for the oils have been recently further testified by considerable quantity of oils discovered in the Bamianhe area, which is obviously playing an important role in guiding further oil exploration.  相似文献   

14.
The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfield development coring wells were analyzed by high-temperature gas chromatography (HTGC),for the relative abundance of C 21-,C 21-C 40 and C 40+ hydrocarbons.The relationship between viscosity of crude oil and C 40+ (%) hydrocarbons abundance is used to expect the viscosity of remaining oil.The ...  相似文献   

15.
Song X  Xu Y  Li G  Zhang Y  Huang T  Hu Z 《Marine pollution bulletin》2011,62(10):2122-2128
Rhodococcus sp. P14 was isolated from crude oil-contaminated sediments. This strain was capable of utilizing three to five rings polycyclic aromatic hydrocarbons (PAHs) including phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP) as a sole carbon and energy source. After cultivated with 50mg/L of each PAH, strain P14 removed 43% Phe, 34% Pyr and 30% BaP in 30 d. Four different hydroxyphenanthrene products derived from Phe by strain P14 (1,2,3,4-hydroxyphenanthrene) were detected using SPME-GC-MS. Strain P14 also was capable of degrading mineral oil with n-alkanes of C17 to C21 carbon chain length. Compared with glucose-grown cells, PAHs-grown cells had decreased contents of shorter-chain length fatty acids (≤ C16:0), increased contents of C18:0, Me-C19:0 and disappeared odd-number carbon chain fatty acids. The contents of unsaturated C19:1, Me-C19:0 increased and C18:0 decreased in mineral oil-grown cells. At the same time, the strain P14 tended to float when cultivated in mineral oil-supplemented liquid medium. The degradation capability of P14 to alkane and PAHs and its floating characteristics will be very helpful for future's application in oil-spill bioremediation.  相似文献   

16.
The presented results have been obtained in a study of the concentrations and composition of aliphatic and polycyclic hydrocarbons in bottom sediments of Volga delta branches and in its shallow zone (2009–2010), as well as the Caspian Sea proper (2010–2013). Oil hydrocarbon pollution has been found to manifest itself mostly in Volga delta branches, which, despite the low concentrations (up to 54.5 μg/g), showed higher hydrocarbons share in Corg (up to 33.8%), while the composition of alkanes suggested their oil genesis. The geochemical barrier the Volga–the Caspian Sea prevents anthropogenic hydrocarbons from entering the open parts of the Caspian. Bottom sediments in the shallow zone of the Northern Caspian, represented by coarse-grained material, are now polluted by oil hydrocarbons to a lesser extent compared with other areas. The highest concentrations of aliphatic hydrocarbons (up to 178 μg/g) were recorded in the deepsea bottom sediments of Derbent Depression and in depressions of the Middle and Southern Caspian. These areas show a higher concentration of Corg (up to 9.884%) and a low concentration of hydrocarbons in Corg (up to 0.16%), while odd high-molecular homologues (n-C25–C31) dominate in the composition of alkanes.  相似文献   

17.
Accidental oil spills from ships or rigs and inputs of effluent such as production formation water (PFW) are key perceived threats to tropical biota from industry activities. Scleractinian corals are an important functional component of tropical reefs and the abundance, diversity and resilience of coral communities can be used as an indicator of ecosystem health. In this paper, we report the effects of petroleum products, including water accommodated fractions (WAF) of crude oil, PFW and dispersant (Corexit 9527), on fertilization and larval metamorphosis of the widespread scleractinian coral, Acropora millepora (Ehrenberg, 1834) in laboratory-based assays. At 20% v/v PFW fertilization was inhibited by 25%. This concentration was equivalent 0.0721 mg l−1 total hydrocarbon (THC). In contrast, larval metamorphosis was more sensitive to this effluent, with 98% metamorphosis inhibited at the same concentration. Crude oil WAF did not inhibit fertilization of gametes until dispersant was introduced. Dispersed oil was slightly more toxic to fertilization than dispersant alone, suggesting toxicity to that event may be additive. The minimum concentration of dispersed oil which inhibited fertilization was 0.0325 mg l−1 THC. Larval metamorphosis was more sensitive than fertilization to crude oil. Although crude oil and dispersant inhibited larval metamorphosis individually, this toxicity was magnified when larvae were exposed to combinations of both. Crude oil inhibited metamorphosis at 0.0824 mg l−1 THC and at 0.0325 mg l−1 THC when dispersed in 10% v/v (dispersant/oil). Management of petroleum-related risks to spawning corals should consider not only the occurrence of the annual coral spawning event, but also the subsequent 1–3-week period during which most larval metamorphosis and recruitment occur.  相似文献   

18.
A phenoloxidase-producing fungus – Cladosporium cladosporioides – was isolated from water of a bog lake. At high concentrations of carbon (333 mM) and nitrogen (12 mM), the fungus demonstrated the formation of a laccase and a high ligninolytic activity. After addition of riverine or groundwater humic substances into culture media (ca. 1 mg mL–1), the fungus showed the ability of degrading (utilizing) of about 60% of these substances. However, the exact quantification of the degree of degradation was difficult because of adsorption of humic matter on fungal mycelium. Reisolated humic substances were lower in aromatic and higher in aliphatic structures. A crude enzyme from the C. cladosporioides culture showed only low activity in decolorizing humic substances, whereas decolorization up to 50% was observed when using a laccase preparation from Polyporus versicolor, and especially in the presence of a redox mediator.  相似文献   

19.
Svetlana  Yessalina  Noriyuki  Suzuki  Hiroyuki  Saito 《Island Arc》2006,15(3):292-303
Abstract   The Sagara oil field is located in the Neogene Kakegawa Basin, close to the Izu collision zone at the junction between the main Japanese Islands and the Izu–Bonin Arc. The Sagara oil field is one of the few oil fields situated in a forearc basin on the Pacific side of Japan and is present in a sedimentary basin with poor oil-generating potential. Several crude oils from Sagara oil field were investigated to infer their origin. Organic geochemical characteristics of Sagara oils showed the influences of light biodegradation, migration-contamination, and migration-fractionation. The maturity levels of Sagara oils evaluated based on abundant alkylnaphthalenes corresponded to 0.9–1.2% vitrinite reflectance. Sagara oils were characterized by significant amounts of higher plant biomarkers, a high pristane/phytane ratio and an absence of organic sulphur compounds, suggesting a siliciclastic source rock deposited under nearshore to fluvial–deltaic environments. Numerous faults and fractures in the active forearc basin provided excellent conduits and facilitated upward migration of light hydrocarbons generated at greater depth in the Kakegawa Basin.  相似文献   

20.
This field study was a combined chemical and biological investigation of the relative rates of weathering and biodegradation of oil spilled in sediments and testing the influence of a bioremediation protocol. The aim of the chemistry work presented here was to determine whether the bioremediation protocol affected the rate of penetration, dissipation or long-term retention of a medium range crude oil (Gippsland) and a Bunker C oil stranded in tropical Rhizophora sp. mangrove and Halosarcia sp. salt marsh environments. Permission for the planned oil spills was granted in the Port Authority area of Gladstone, Queensland (Australia). Sediment cores from three replicate plots of each treatment for mangroves and four replicate plots for the salt marsh (oil only and oil plus bioremediation) were analysed for total hydrocarbons (THC) and for individual alkane markers using gas chromatography with flame ionization detection (GC–FID). Sediments were collected at day 2, then 1, 2, 5 or 6 and 12 or 13 months post-spill for mangroves and day 2, 1, 3 and 9 months post-spill for salt marshes. Over this time, hydrocarbons in all of the oil treated plots decreased exponentially. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between untreated oil and bioremediated oil in the mangrove plots. The salt marsh plots treated with the waxy Gippsland oil showed a faster rate of biodegradation of the oil in the bioremediated plots. In this case only, the degradation rate significantly impacted the mass balance of remaining oil. The Bunker C oil contained only minor amounts of highly degradable n-alkanes and bioremediation did not significantly impact its rate of loss in the salt marsh sediments. At the end of each experiment, there were still n-alkanes visible in the gas chromatograms of residual oils. Thus it was concluded that there was unlikely to be any change in the stable internal biomarkers of the oils over this time period. The predominant removal processes in both habitats were evaporation and dissolution, with a lag-phase of 1–2 months before the start of microbial degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号