首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 of them were optically invisible protostars and 6 were young T Tauri stars. We observed 98-GHz continuum and CS(J = 2 – 1) line emissions simultaneously with spatial resolutions of 2 . 8-8 . 8 (360-1,200 AU). The continuum emission was detected from 5 out of 6 T Tauri stars and 2 out of 13 protostar candidates: the emission was not spatially resolved and was consistent with being originated from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability of the 98-GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

2.
The results of a speckle imaging survey of T Tauri stars suggest that most, if not all, young low mass stars have companions. Repeated observations of these young binary stars have revealed orbital motion in the closest pairs (0.3), proving that these systems are indeed gravitationally bound and providing the basis for mass estimates in the upcoming years. These mass estimates are necessary to distinguish between the various binary star formation mechanisms that have been proposed to date.  相似文献   

3.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

4.
We report on our search for possible planetary system candidates in a volume-limited sample of 62 nearby A stars. Since the evolutionary lifetimes of A stars ( 109 yrs) roughly correspond to the era of planet formation and subsequent heavy bombardment in our solar system, our study could provide valuable insight into the origin of our own Solar System. From our ground-based visual and IUE high-resolution spectroscopy of all the northern nearby A stars, we have identified at least 12 stars with circumstellar gas. Combining these results with our previous IRAS survey we are probing the link between stars with circumstellar gas and those showing circumstellar dust disks. Our aim is not just to identify stars with gas, or stars with both gas and dust, but to identify systems with dynamic spectral activity similar to Pic, a well known proto-planetary system candidate. By measuring the gas dynamics in the disks of these Pic-like stars, we can begin to study the physics of accretion disks of young evolving systems.  相似文献   

5.
We have measured polarization of the 1.1 mm and 0.8 mm continuum emission for 3 pre-T Tauri stars and 2 T Tauri stars. Positive detections were made for NGC 1333 IRAS 4 and IRAS 16293-2422, while L1551 IRS 5 and HL Tau were only marginally detected. For GG Tau we measured a 2 upper limit of 3%. The polarization is interpreted in terms of thermal emission by magnetically aligned dust grains in circumstellar disks or envelopes. We have found a definite geometrical relation between the polarization and other circumstellar structure.  相似文献   

6.
Abstract— Carbon stars are an important source of presolar TiC, SiC, and graphite grains found in meteorites. The elemental abundances in the stellar sources of the SiC grains are inferred by using condensation calculations. These elemental abundances, together with C isotopic compositions, are used to identify possible groups of carbon stars that may have contributed SiC grains to the presolar dust cloud. The most likely parent stars of meteoritic SiC mainstream grains are N-type carbon stars and evolved subgiant CH stars. Both have s-process element abundances higher than solar and 10 < 12C/13C < 100 ratios. The J stars and giant CH stars, with solar and greater than solar abundances of s-process elements, respectively, are good candidate parents for the ‘A’ and ‘B’ SiC grains with low 12C/13C ratios. A special subgroup of CH giant stars with very large 12C/13C ratios could have parented the ‘Y’ SiC grains with 12C/13C ratios > 100. The carbon star population (e.g., N, R, J, CH groups) needed to provide the observed SiC grains is compared to the current population of carbon stars. This comparison suggests that low-metallicity CH stars may have been more abundant in the past (>4.5 Ga ago) than at present. This suggestion is also supported by condensation-chemistry modeling of the trace element patterns in the SiC grains that shows that subsolar Fe abundances may be required in the stellar sources for many SiC grains. The results of this study suggest that presolar SiC grains in meteorites can provide information about carbon stars during galactic evolution.  相似文献   

7.
T Tauri stars are young stars usually surrounded by dusty disks similar to the one from which we believe our own Solar System formed. Most T Tauri stars exhibit a broad emission or absorption band between 7.5 and 13.5µm which is attributed to silicate grains in the circumstellar environment. We imaged three spatially resolved T Tauri binaries through a set of broadband filters which include the spectral region occupied by the silicate band. Two of these objects (T Tauri and Haro 6–10) are infrared companion systems in which one component is optically much fainter but contributes strongly in the infrared. Both infrared companions exhibit a deep silicate absorption which is not present in their primaries, indicating that they suffer very strong local extinction which may be due to an edge-on circumstellar disk or to a dense shell. We also took low resolution spectra of the silicate feature of two unresolved T Tauris to look for narrow features in the silicate band which would indicate the presence of specific minerals such as olivine. We observed GK Tau, for which Cohen and Witteborn (1985) reported a narrow emission feature at 9.7µm, but do not find evidence for this feature, and conclude that it is either time-dependent or an artifact of absorption by telluric ozone.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

8.
Summary In the solar neighborhood, approximately half of all intermediate mass main sequence stars with initially between 1 and about 5 Mbecome carbon stars with luminosities near 104 L for typically less than 106 years. These high luminosity carbon stars lose mass at rates nearly always in excess of 10–7 M yr–1 and sometimes in excess of 10–5 M yr–1. Locally, close to half of the mass returned into the interstellar medium by intermediate mass stars before they become white dwarfs is during the carbon star phase. A much greater fraction of lower metallicity stars become carbon-rich before they evolve into planetary nebulae than do higher metallicity stars; therefore, carbon stars are much more importan t in the outer than in the inner Galaxy.  相似文献   

9.
We present a study of weak near-IR absorption lines in 44 low luminosity YSOs. Using a spectral resolution of 1000 most Class II sources show CO overtone absorption bands of varying strength in the K window, whether they have optical counterparts or not. Class I sources tend to show featureless 2µm continua even though a S/N > 100 was achieved. High resolution (R=17000) echelle spectra were also obtained for a sub-sample of YSOs. Most show an unresolved12CO(2-0) bandhead, which when combined with inferred CO excitation temperatures and optical depths clearly points to a photospheric rather than a disk origin for the bands. They also show that embedded Class IIs are not rapidly rotating.We find an excellent correlation between increasing near-IR colour excess and decreasing band strength and interpret this in a straightforward way as due to veiling of the stellar photosphere by circumstellar dust emission at 1000-1200 K, probably from a disk. A veiling correction was applied and intrinsic indices obtained for many YSOs. The results provide confirmation that Class II sources are equivalent to T Tauri stars.  相似文献   

10.
On the basis of hydrodynamical simulations the semi-regular and alternating pulsations of the W Vir and RV Tau stars are studied including non-steady radiative transfer effects in gray sphericalsymmetric atmospheres. It is shown that the transition from regular to semi-regular oscillations occurs at periodsP13–15 days due to pulsation energy imbalance provoqued by strong radiating shocks. The differences between the periods and amplitudes of W Vir and RV Tau variables are explained as a result of this imbalance. It is suggested that the semi-regular alternating pulsations of the RV Tau stars appear following a period-doubling phenomenon, which can be also understood in terms of the pulsation energy variations between odd and even fundamental cycles. The pulsational characteristics of the period-doubled models are in general accordance with those observed in the RV Tau stars. On the basis of numberical results, a theoretical estimation of the upper limit for the luminosity of the RV Tau stars is derived asL103 L .  相似文献   

11.
Optically bright and very cool AFGL carbon stars have been analyzed in order to find a common evolutionary sequence according to indications in this sense derived from papers which have treated only the first or the second group of stars separately.An apparent discrepancy existing between the stellar parameters has been overcome following an inverse procedure which provides these values by means of the shell parameters.The results seem to indicate that AFGL stars, whose variability nature is still unknown, should be Mira or Mira-like according to the values of their dust shell temperatures.Dust shell masses have been estimated for both samples of stars finding an inverse dependence with the effective temperature,M d T * –9.1 .This may be interpreted in terms of evolutionary sequence in the sense that the cooler the stars the larger their shell masses.  相似文献   

12.
We have detected 1.1 mm continuum emission from 24 of 53 Herbig Ae/Be stars surveyed with the JCMT. Survival analysis shows that 1.1 mm luminosity is correlated with bolometric luminosity and with IRAS 25µm luminosity. For those stars that were also detected at 0.45 or 0.8 mm we find a typical flux dependence of the form S #x03BD; 3, which is steeper than that of most classical T Tauri stars.  相似文献   

13.
We review the observational status of several different kinds of intrinsic variables among the early-type stars and attempt to interpret the variations in terms of our current understanding of stellar pulsation. Four distinct types of intrinsic variable can be defined: the Cep, 53 Per, Oph and Eri stars. A simple observational classification scheme, which is readily interpreted in terms of pulsation properties, is proposed. The limits of the instability strip and pulsation constants for the Cep and 53 Per stars is discussed. Problems with the interpretation of Eri stars in terms of pulsation are pointed out. The observations are consistent with rotational modulation. A problem with mode identification in Eri stars is discussed.  相似文献   

14.
In this 13th compilation of BAV results of observations are given from the years 1978 and 1979 for 172 observed minima of 75 eclipsing binaries, 70 maxima of 17 RR Lyrae stars, 309 results of 93 Mira stars and 90 results of 19 longperiodic, semiregular irregular and RV Tauri stars and 6 results of 5 eruptive variable stars.  相似文献   

15.
The IRAS and 2MASS associations for 193 T Tauri stars are identified in this paper. From the color–color diagrams and spectral index, it is found that the IR excesses for most samples are due to thermal emission from the circumstellar material, as suggested previously. It is also found that the IR excesses at IRAS region for few T Tauri stars and the near-IR excesses for some T Tauri stars are likely attributed to free-free emission or free-bound emission from the circumstellar ionized gas. Moreover, It is found in deredened J–H versus H–K color–color diagram that there is a slight separation in different spectral groups. The T Tauri stars locus equation in J–H versus H–K color–color diagram for our sample is also presented.  相似文献   

16.
We present new results from recent X-ray observations of the accreting pre-main sequence stars FU Orionis and T Tauri. XMM-Newton observations of the close binary system FU Ori reveal an unusual X-ray spectrum consisting of a cool moderately-absorbed component and a hot component viewed through much higher absorption. The two components thus originate in physically distinct regions. The double absorption spectrum is qualitatively different than observed in typical coronal sources and may signal either non-coronal emission or separate unresolved X-ray contributions from more than one star in the system. High-resolution Chandra imaging of the T Tau triple system shows that its X-ray emission is dominated by the optically-revealed northern component T Tau N. X-ray spectra of T Tau obtained with XMM can be acceptably fitted with a moderately absorbed two-temperature thermal plasma model. Its spectral properties are similar to those seen in coronal X-ray sources.  相似文献   

17.
H emission objects were searched for, using the objective-prismSchmidt plates in a 36 deg2 sky area covering the Cepheus OB3 association.Hundred and eight emission stars have been found, 68 of which are newfindings to our knowledge. The properties of the IRAS point sourcesidentified with H emission stars indicate that most of theH emission stars are T Tauri stars or related objects. Hemission stars associated with IRAS sources and those unassociated havedifferent distributions, suggesting an age sequence among them.Altogether, they show a ring- or shell-like surface distribution, whichalmost coincides with that of heated dusts, and these distributionsappear to be encompassed by an HI shell.  相似文献   

18.
The acoustic energy-generation rate from the convective zone was calculated for various models. Results show that chromosphere and corona can be expected around stars with temperature lower than 8000K at the main sequence, and lower than 6500K at logg=2.When a star is rotating rapidly, mass loss from its corona is large, and can be an effective mechanism of braking the stellar rotation. If this mechanism is effective, we can explain the slow rotation of stars later than F2 to be the result of the loss of the angular momentum through a stellar wind that is effective in their main sequence phase. Stars with massM>1.5M lose mass through a stellar wind during their contraction phase. The mass-loss rate is larger than the solar value because of the larger energy input into the chromosphere-corona system and because of the smaller gravitational potential at the surface. T Tauri stars may be the observational counterparts for such stars. As the duration of contraction phase is very short (less than 107 years), the braking mechanism works only in the presence of a strong magnetic field (Ap) or in the presence of a companion (Am).Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

19.
L. Hartmann 《Solar physics》1985,100(1-2):587-597
Winds are directly detected from solar-type stars only when they are very young. At ages 106 yr, these stars have mass loss rates 106 times the mass flux of the present solar wind. Although these young T Tauri stars exhibit ultraviolet transition-region and X-ray coronal emission, the large particle densities of the massive winds lead to efficient radiative cooling, and wind temperatures are only 104 K. In these circumstances thermal acceleration is unlikely to play an important role in driving the mass loss. Turbulent energy fluxes may be responsible for the observed mass loss, particularly if substantial magnetic fields are present.The presence of stellar mass loss is indirectly shown by the spindown of low-mass stars as they age. It appears that many solar-mass stars spin up as they contract toward the Main-Sequence, reaching a maximum equatorial velocity of 50 to 100 km s–1. These stars spin down rapidly upon reaching the Main Sequence. Spindown may be enhanced by a decoupling or lag between convective envelope and radiative core. Because this spindown occurs fairly early in a solar-type star's history, the internal structure of old stars like the Sun may not depend upon initial conditions.  相似文献   

20.
We present archival and recent IUE high dispersion spectra of late B stars which reveal the presence of accreting gas with velocities as high as 350 km s–1, collisional ionization of the accreting gas to temperatures above the stellar Teff, and column densities intermediate between those observed toward classical Herbig Ae/Be stars and the nearby proto-planetary system Pictoris. One of the stars, HD 176386, while lacking obvious optical signatures of youth, is a member of the R CrA star formation region, and with an inferred age of 2.8 Myr has not yet arrived on the zero-age main sequence (ZAMS). The other object, an isolated, field B star with pronounced IR excess due to warm, circumstellar dust, 51 Oph, exhibits only modest h emission. The combination of high velocity, accreting gas in systems with IR excesses due to circumstellar dust suggests that not only are these objects candidate proto-planetary systems, but that they may represent an extension to higher stellar masses of the weak-emission pre-main sequence (PMS) stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号