首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本根据视横向速度是否红移依赖对相对论束模型进行分类并提出对相应模型进行统计检验的方法,作为应用的例子,本利用前人献所给视超光速样本进行统计分析,并对有关结果进行了讨论。  相似文献   

2.
覃一平  樊军辉 《天文学报》1997,38(2):156-159
本文利用文川提供的视超光速运动数据,对标准宇宙模型、相对论束模型及同步加速自康普顿散射机制在视超光速运动计算方面是否相容的问题进行统计检验.结果表明,理论预言与实际数据相吻合,上述诸理论是相容的,并且它们对视超光速运动的综合解释是合理的.  相似文献   

3.
通过主要在短厘米波长的全球VLBI观测,已经发现强射电类星体4C39.25在十秒差距尺度结构中的视超光速运动,其运动学图景表明该源是一个很特殊的视超光速源.近几年已提出了若干模型,试图解释这特殊的运动图景.报道不多的百秒差距尺度的VLBI观测,很可能有助于检验提出的模型.本文介绍用欧洲网及上海25m天线,在18cm波长对4C39.25所作的VLBI 成象观测的初步结果,显示百秒差距尺度复杂结构及可能存在的视超光速运动.  相似文献   

4.
用相对论加速喷流模型对48个具有视超光速的射电源进行了分析,结果不但支持流行的喷流模型而且说明加速模型是合理的。  相似文献   

5.
视超光速运动与加速模型   总被引:1,自引:1,他引:0  
用相对论加速喷流模型对48个具有视超光速的射电源进行了分析,结果不但支持流行的喷流模型而且说明加速模型是合理的。  相似文献   

6.
本文对河外射电变源和致密源的观测特征以及理论模型进行了评述。本文分为两部分。第一部分包括仪器及观测方法、样品选择及资料分析,射电源的频谱特征和时变性质等。 本文的第二部分简述了理论研究和模型工作。其中包括对于在河外射电源中观测到的射电频谱及视超光速运动等现象的理论解释。和其它模型比较起来,Rees模型比较好,它可以很好地解释观测特性。  相似文献   

7.
使用望远镜目视星像评估视宁度时,常用Pickering视宁度等级(Pickering Seeing Scale)判定法,但这个等级并未仔细考虑望远镜的光瞳函数对衍射环的影响。事实上经典的Pickering视宁度等级并不非常适合目前常用的有副镜的折反射望远镜,本文通过数值模拟和解析计算验证了这个问题,并在此基础上对Pickering视宁度等级判定法做了相应的补充。  相似文献   

8.
邵正义  赵君亮 《天文学报》1996,37(4):377-386
本文提出了一个普适的衡量成团天体系统成员概率计算结果的有效性指数:E=1-NΣ{P(i)[1-P(i)]}/ΣP(i)Σ[1-P(i)]},并以此对以Sanders方法为基础的各种成员确定模型的有效性进行了分析.从总体上说,运动学资料(自行、视向速度等)是一类有效的观测判据.  相似文献   

9.
中国古代流星记录的亮度归算   总被引:2,自引:0,他引:2  
王玉民 《天文学报》2003,44(4):416-430
在中国古籍中关于流星“大如X”的纪录,是古人对星像视面大小的估测,此视面是人裸眼观星时由于光线的衍射、漫射以及视觉中的光渗作用造成的一种特殊感知现象.视面“大如X”的实质是亮度的记录.这些记录可以按古人目视观测天象的天球模型进行视大小(角直径)的量化,进而可以用一些已知亮度的流星记录为“标准点”,将其归算为亮度.并将古籍中流星“大如X”的4420次纪录的131种比体均作了亮度的归算.  相似文献   

10.
本文云南天文台二维光谱仪观测的1989年8月17日耀斑的Hβ波 段光谱资料,采用多云模型的方法,得到此耀斑的观测视向速度分布,并在一定的简化和假设下,采用MHD理论计算了几种情况下光耀斑环内物质运动的视向速度分布,与观测的视向速度分布加以比较,研究和探讨耀斑环中的物质运动情况。  相似文献   

11.
We explore the implications for the high-redshift universe of 'state-of-the-art' models for the chemical and spectrophotometric evolution of spiral galaxies. The models are based on simple 'scaling relations' for discs, obtained in the framework of cold dark matter models for galaxy formation, and were 'calibrated' so as to reproduce the properties of the Milky Way and of nearby discs (at redshift z ∼0) . In this paper, we compare the predictions of our 'hybrid' approach to galaxy evolution to observations at moderate and high redshift. We find that the models are in fairly good agreement with observations up to z ∼1 , while some problems appear at higher redshift (provided there is no selection bias in the data); these discrepancies may suggest that galaxy mergers (not considered in this work) played a non-negligible role at z >1 . We also predict the existence of a 'universal' correlation between abundance gradients and disc scalelengths, independent of redshift.  相似文献   

12.
We extend our spiral galaxy models, which successfully describe nearby template spectra as well as the redshift evolution of CFRS and HDF spirals, to include – in a chemically consistent way – the redshift evolution of a series of individual elements. Comparison with observed DLA abundances shows that DLAs might well be the progenitors of present-day spiral types Sa through Sd. Our models bridge the gap between high redshift DLA and nearby spiral HII region abundances. The slow redshift evolution of DLA abundances is a natural consequence of the long SF timescales for discs, the scatter at any redshift reflects the range of SF timescales from early to late spiral types. We claim that, while at high redshift all spiral progenitor types seem to give rise to DLA absorption, towards low redshifts, the early-type spirals seem to drop out of DLA samples due to low gas and/or high metal and dust content. Model implications for the spectrophotometric properties of the DLA galaxy population are discussed in the context of campaigns for the optical identifications of DLA galaxies both at low and high redshift. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift     ) Lyman-break galaxies (LBGs). We consider a 'collisional starburst' model in which bursts of star formation are triggered by galaxy–galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at     and     with a reasonable amount of dust extinction. Model galaxies at     have star formation rates, half-light radii,     colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two 'quiescent' models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints.  相似文献   

14.
In this paper, we explore the plausible luminosity evolution of early-type galaxies in different cosmological models by constructing a set of pure luminosity evolution (PLE) models via the choices of the star-formation rate (SFR) parameters and formation redshift z f of galaxies, with the observational constraints derived from the Hubble Space Telescope ( HST  ) morphological number counts for elliptical and S0 galaxies of the Medium Deep Survey (MDS) and the Hubble Deep Field (HDF). We find that the number counts of early-type galaxies can be explained by the pure luminosity evolution models, without invoking exotic scenarios such as merging or introducing an additional population, but the evolution should be nearly passive, with a high z f assumed. The conclusion is valid in all of the three cosmological models we adopt in this paper. We also present the redshift distributions for three bins of observed magnitudes in the F814w passband, to show the redshift at which the objects that dominate the counts at a given magnitude may be found. The predictions of the redshift distribution of 22.5 <  b j  < 24.0 are also presented for comparison with future data.  相似文献   

15.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

16.
The recently discovered gravitationally lensed system CLASS B1359 +154 appears to have six detectable images of a single background source at a redshift of 3.235. A group of galaxies acts as the lens, at a redshift of ∼ 1. The present work identifies two distinct, physically plausible image configurations, a 7-image one and a 9-image one. Mass models are constructed corresponding to realizations of these two configurations. Both models call for, in addition to non-singular galaxy-type lenses, a larger scale mass component that resembles the extended dark matter distributions seen in relatively low-redshift galaxy groups. It is presently observationally impossible to study the extended X-ray emission from a group at such a high redshift, hence lensing studies are of some interest. A lensed system with a high image multiplicity does not necessarily admit of a unique lensing interpretation; discrimination is possible with additional observable details (e.g., the image parities, which are uncommon among even the simpler systems).  相似文献   

17.
We discuss how different theoretical predictions for the variance σ 2 of the counts-in-cells distribution of radio sources can be matched to measurements from the FIRST survey at different flux limits. The predictions are given by the integration of models for the angular correlation function w ( θ ) for three different functional forms of the redshift distribution N ( z ), different spatial correlation functions that match the observed present-day shape and by different evolutions of the bias b ( z ) with redshift. We also consider the two cases of open and flat universes. Although the predicted w ( θ ) show substantial differences because of differences in the values of N ( z ), these differences are not significant compared to the uncertainties in the current observations. It turns out that, independent of the geometry of the universe and the flux limit, the best fit is provided by models with constant biasing at all times, although the difference between models with epoch-independent bias and models with bias that evolves linearly with redshift is not very large. All models with strong evolution of bias with epoch are ruled out, as they grossly overestimate the amplitude of the variance over the whole range of angular scales sampled by the counts-in-cells analysis. As a further step we directly calculated w obs( θ ) at 3 mJy from the catalogue and matched it with our models for the angular correlation function, in the hypothesis that the clustering signal comes from two different populations, namely AGN-powered sources and starbursting galaxies. The results are consistent with a scenario for hierarchical clustering where the fainter starbursting galaxies trace the mass at all epochs, while the brighter AGNs are strongly biased, with b ( z ) evolving linearly with redshift, as suggested by some theories of galaxy formation and evolution.  相似文献   

18.
We use the observed polarization properties of a sample of 26 powerful radio galaxies and radio-loud quasars to constrain the conditions in the Faraday screens local to the sources. We adopt the cosmological redshift, low-frequency radio luminosity and physical size of the large-scale radio structures as our 'fundamental' parameters. We find no correlation of the radio spectral index with any of the fundamental parameters. The observed rotation measure is also independent of these parameters, suggesting that most of the Faraday rotation occurs in the Galactic foreground. The difference between the rotation measures of the two lobes of an individual source, as well as the dispersion of the rotation measure, shows significant correlations with the source redshift, but not with the radio luminosity or source size. This is evidence that the small-scale structure observed in the rotation measure is caused by a Faraday screen local to the sources. The observed asymmetries between the lobes of our sources show no significant trends with each other or other source properties. Finally, we show that the commonly used model for the depolarization of synchrotron radio emission by foreground Faraday screens is inconsistent with our observations. We apply alternative models to our data and show that they require a strong increase of the dispersion of the rotation measure inside the Faraday screens with cosmological redshift. Correcting our observations with these models for redshift effects, we find a strong correlation of the depolarization measure with redshift and a significantly weaker correlation with radio luminosity. We do not find any (anti-)correlation of depolarization measure with source size. All our results are consistent with a decrease in the order of the magnetic field structure of the Faraday screen local to the sources for increasing cosmological redshift.  相似文献   

19.
星系红移巡天的一个主要目标是依据光谱红移测距,详细刻画宇宙中星系的三维空间分布。由于星系本动速度的存在,红移空间的星系分布存在着严重畸变,在大小尺度上有着不同模式的各向同性偏离。通过对红移畸变的观测研究,人们可从中获取速度场的信息,因此,红移畸变已成为暗能量探测的重要探针之一,为检验宇宙学尺度上的引力模型提供帮助。当前星系红移巡天项目已经取得了非凡成功,为人们提供了详细的星系空间分布数据。人们据此测量了星系的相关函数和功率谱,提取了精确的红移畸变信号,并通过模型拟合限制出了一批不同红移处宇宙结构增长率的估值,为探索宇宙尺度的引力模式提供了数据支持。主要介绍红移畸变模型、星系红移巡天观测和宇宙结构增长率测量等研究进展。  相似文献   

20.
Galaxy source counts that simultaneously fit the deep mid-infrared surveys at 24 microns and 15 microns made by the Spitzer Space Telescope and the Infrared Space Observatory ( ISO ), respectively, are presented for two phenomenological models. The models are based on starburst and luminous infrared galaxy dominated populations. Both models produce excellent fits to the counts in both wavebands and provide an explanation for the high-redshift population seen in the longer Spitzer 24-micron band supporting the hypothesis that they are luminous–ultraluminous infrared galaxies at   z = 2–3  , being the mid-infrared counterparts to the submillimetre galaxy population. The source counts are characterized by strong evolution to redshift unity, followed by less drastic evolution to higher redshift. The number–redshift distributions in both wavebands are well explained by the effect of the many mid-infrared features passing through the observation windows. The sharp upturn at around a millijansky in the 15-μm counts in particular depends critically on the distribution of mid-infrared features around 12 μm, in the assumed spectral energy distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号