首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
For the ammonia-oxidizing bacterium Nitrosomonas europaea, grown autotrophically using semicontinuous culturing, average biomass was depleted in 13C relative to CO2 dissolved in the medium by ca. 20‰ and the total-lipid extract was depleted in 13C relative to biomass by 3.7‰. The n-alkyl lipids (weighted average of fatty acids) and isoprenoid lipids (weighted average of hopanoids) were both depleted in 13C relative to biomass by about 9‰. The large depletion in the isoprenoid lipids seems to indicate that isotopic fractionations associated with the biosynthesis of methylerythritol phosphate (MEP) affected at least two carbon positions in each isoprene unit. Among the fatty acids, trans-9-hexadecenoic acid was most depleted (13.0‰ relative to biomass), followed by cis-9- hexadecenoic acid (9.6‰) and hexadecanoic acid (6.9‰). Isotopic relationships between the three acids suggest that significant isotope effects were associated with the desaturation and cis to trans isomerization of fatty acids. Given these observations, hopanoids produced by ammonia-oxidizing bacteria growing in natural waters are likely to be depleted in 13C by 26–30‰ relative to dissolved CO2. Since CO2 at aquatic oxyclines is often depleted in 13C, the range of δ values expected for hopanoids is ca. −34‰ to −55‰. The δ values of geohopanoids observed in numerous studies and attributed to unspecified chemoautotrophs fall within this range.  相似文献   

2.
Shewanella putrefaciens (Strain MR-4), a gram negative facultative marine bacterium, was grown to stationary phase under both aerobic and anaerobic conditions using lactate as the sole carbon source. Aerobically-produced cells were slightly enriched in 13C (+1.5‰) relative to the lactate carbon source, whereas those from anaerobic growth were depleted in 13C (−2.2‰). The distribution of fatty acids produced under aerobic conditions was similar to that resulting from anaerobic growth, being dominated by C16:1 ω7 and C16:0 fatty acids with a lesser amount of the C18:1 ω7 component. Low concentrations of saturated even numbered normal fatty acids in the C14 to C18 range, and iso-C15:0 were synthesized under both conditions. Fatty acids from anaerobic cultures (average δ13C=−37.8‰) were considerably depleted in 13C relative to their aerobically-synthesized counterparts (−28.8‰). The distinct differences in isotopic composition of both whole cells and individual fatty acid components result from differences in assimilation pathways. Under aerobic conditions, the primary route of assimilation involves the pyruvate dehydrogenase enzyme complex which produces acetyl-CoA, the precursor to lipid synthesis. In contrast, under anaerobic conditions formate, and not acetate, is the central intermediate in carbon assimilation with the precursors to fatty acid synthesis being produced via the serine pathway. Anaerobically-produced bacterial fatty acids were depleted by up to 12‰ relative to the carbon source. Therefore, detection of isotopically depleted fatty acids in sediments may be falsely attributed to a terrestrial origin, when in fact they are the result of bacterial resynthesis.  相似文献   

3.
New stable isotope analyses on molluscan shells from a long core drilled in the crater lake of Valle di Castiglione, near Rome, extended the investigated portion of the core to 37 m. The succession of δ18O‰ values in the core interval 37–2.3 m ranges from −2.8 to +6.9‰ with only six samples below 0‰ (PDB). These results point to arid climatic phases coupled with the high measured δ18O values of the biogenic carbonate. In contrast, depleted 18O samples correspond to wet climatic periods, in agreement with a strong evaporative control on the lake water isotopic composition. The 13C content of the shells shows sharp changes controlled by the dissolved inorganic carbon isotope budget. Isotopic data suggest that the whole body of water behaved as a closed system, thus resembling lacustrine systems located in arid and semiarid regions where hydrological control dominates the geochemical parameters.  相似文献   

4.
Cryogenic cave carbonate (CCC) represents a specific type of speleothem. Its precipitation proceeds at the freezing point and is triggered by freezing-induced concentration of solutes. Compared to classical speleothems (stalagmites, flowstones), CCC occurs as accumulations of loose uncemented aggregates. The grain sizes range from less than 1 μm to over 1 cm in diameter. Karst groundwater chemistry and its freezing rate upon entering the cave are responsible for highly variable grain morphology. Rapid freezing of water results in the formation of CCC powders with grain size typically below 50 μm. Slow freezing of water in caves (usually in systems where the CO2 escape is partly restricted; e.g., ice covered water pools) results in the formation of large mineral grains, with sizes from less than 1 mm to about 20 mm. The range of carbon and oxygen stable isotope compositions of CCC is larger than for a typical carbonate speleothem. Rapid freezing of water accompanied by a quick kinetic CO2 degassing results in large ranges of δ13C of the CCC powders (between –10‰ and +18‰ PDB). Slow freezing of water, with a restricted CO2 escape results in gradual increase of δ13C values (from −9‰ to +6‰ PDB; data ranges in individual caves are usually much more restricted), accompanied by a δ18O decrease of the precipitated carbonate (overall range from −10‰ to −24‰ PDB). These unusual trends of the carbonate δ18O evolution reflect incorporation of the heavier 18O isotope into the formed ice. New isotope data on CCC from three Romanian ice caves allow better understanding of the carbon and oxygen isotope fingerprint in carbonates precipitated from freezing of bulk water. CCCs are proposed as a new genetic group of speleothems.  相似文献   

5.
Aerobic methanotrophy at ancient marine methane seeps: A synthesis   总被引:2,自引:0,他引:2  
The molecular fingerprints of the chemosynthesis based microbial communities at methane seeps tend to be extremely well preserved in authigenic carbonates. The key process at seeps is the anaerobic oxidation of methane (AOM), which is performed by consortia of methanotrophic archaea and sulphate reducing bacteria. Besides the occurrence of 13C depleted isoprenoids and n-alkyl chains derived from methanotrophic archaea and sulphate reducing bacteria, respectively, 13C depleted triterpenoids have been reported from a number of seep deposits. In order to evaluate the significance of these apparently non-AOM related molecular fossils, the biomarker inventories of one Campanian and two Miocene methane seep limestones are compared. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. Structural and carbon isotope data reveal that aerobic methanotrophy was common at some ancient methane seeps as well. The Miocene Marmorito limestone contains abundant 3β-methylated hopanoids (δ13C: −100‰). Most likely, 3β-methylated hopanepolyols, prevailing in aerobic methanotrophs, were the precursor lipids of these compounds. A series of isotopically depleted 4-methylated steranes (lanostanes; δ13C: −80‰ to −70‰) and similarly isotopically depleted 17β(H),21β(H)-32-hopanoic acid in the Miocene Pietralunga seep limestone also are derived probably from aerobic methanotrophs. Lanosterol, which is known to be produced by aerobic methanotrophs, is the most likely precursor of 4-methylated steranes. Less obvious is the origin of 8,14-secohexahydrobenzohopanes (δ13C: −110‰ to −107‰) in Late Cretaceous seep limestones. These hopanoids probably reflect early degradational products of precursor lipids locally produced by seep endemic aerobic methanotrophs.  相似文献   

6.
We examined the utilization of carbon and nitrogen in two common Red Sea coral species (Stylophora pistillata and Favia favus), differing in colony morphology and polyp size, along a depth gradient down to 60 m. We describe the changes in C/N ratios and in the stable isotope composition of carbon and nitrogen of coral’s tissue and algal symbionts. We also measured the carbon isotopic composition of the lipid fraction extracted from both coral tissue and algal symbionts in order to reveal the changes in the carbon source utilized by the host coral for lipid synthesis.The results show that for both species, δ13C decreases by 7–8‰ in animal tissue, algal symbionts and in the lipid fractions as depth increases. However, in contrast to previous reports, the difference between δ13C values of coral tissue and algal symbionts does not increase with depth. δ15N values of coral tissue and algal symbionts in both species do not correlate with depth suggesting that the heterotrophic capacity of these corals does not increase with depth. δ13C values of tissue lipids were depleted by an average of 3.5‰ compared to δ13C of the entire tissue at all depths. δ13C values of algal lipids were depleted by an average of 2‰ compared to δ13C of the entire zooxanthellae at all depths, indicating high efficiency of carbon recycling between the two symbiotic partners along the entire gradient. The depletion of lipids is attributed to the fractionation mechanism during lipid synthesis. In addition, for both species, δ13C values of algal lipids were enriched compared with δ13C of tissue lipids. In S. pistillata, the difference between δ13C values of tissue lipids and algal lipids increased linearly with depth, indicating a change in the sources of carbon utilized by the coral for lipid synthesis below 20 m from an autotrophic to a heterotrophic source. However, in F. favus, this average difference was 4 times larger compared to shallow S. pistillata and was constant along the entire depth gradient, suggesting that F. favus uses heterotrophically-acquired carbon for lipid synthesis regardless of depth. Overall, F. favus exhibited enriched δ13C and δ15N values compared to S. pistillata along the entire gradient. We attribute these differences to both morphological differences (i.e. colony morphology, tissue thickness and polyp size) between the two species and to a higher heterotrophy/autotrophy ratio in F. favus at all depths. The C/N ratio in S. pistillata tissue decreased with increasing water depth whereas in F. favus it remained constant. This reflects a higher heterotrophic capacity in the large polyped F. favus, at all depths.  相似文献   

7.
The degree of isotopic variation in fossil organic matter renders bulk δ13C signatures strongly influenced by molecular isotopic heterogeneity. For example, in fossil wood the relative abundance of less depleted 13C moieties, i.e. preserved 13C enriched polysaccharides versus the relatively 13C depleted lignin moieties, can be seen to significantly bias δ13Cfossil wood values. Moreover the variation in δ13C values of specific compounds within fossil material are themselves highly variable and reflect the heterogeneity in isotopic values of different carbon atoms within individual compounds. For studies using δ13C values of fossil plant material as proxies (e.g., for δ13Cpalaeoatmosphere, δ13Cbiomass) it is recommended that the biases introduced through molecular heterogeneity, preservation type and taxonomic status of the fossil material are determined initially. Biases inherent in the bulk signature can then be reduced, rendering this value more robust. Alternatively, compound specific stable carbon isotope measurements of individual moieties preserved through geological time might prove to be an alternative proxy for monitoring changes in the bulk δ13C value of the plant and might reveal atmospherically induced trends.  相似文献   

8.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

9.
Inorganic gases are commonly seen in eastern China and occasionally in southern China from the shallow water columns above hot and cold springs. The gases contain 68% to nearly 100% CO2, with δ13CCO2 and δ13C1 values in the range of −1.18‰ to −6.00‰ and −19.48‰ to −24.94‰, respectively. All of the 34 large inorganic CO2 and one inorganic methane accumulations discovered in China are distributed in eastern parts of the country, from both onshore and continental shelf basins. No commercial inorganic gas accumulation has been found in central and western China. This is a review of the occurrence and geochemical characteristics of inorganic gas accumulations in Chinese sedimentary basins. A detailed study of gas samples collected from four representative inorganic CO2 pools and one possible inorganic methane pool indicates that inorganic alkane gases typically show δ13C1 values greater than −10‰ versus PDB (mostly −30‰), with a positive stable carbon isotope sequence of δ13C1 < δ 13C2 < δ13C3 < δ 13C4. In contrast, the δ13C1 values of biogenic alkane gases are lighter than −30‰, with a negative isotope sequence (i.e. δ13C1 > δ13C2 > δ 13C3 > δ13C4). Inorganic gases also tend to show less negative δ13CCO2 values (−10‰) than biogenic gases (<−10‰).  相似文献   

10.
A carbon and oxygen isotope survey based on 42 samples from the Amba Dongar carbonatite complex of Gujarat, India, indicates that the magmatic differentiation series sövite → alvikite → ankeritic carbonatite is beset with a distinct isotope trend characterized by a moderate rise in 13C coupled with a sizeable increase in 18O. From an average of −4.6 ± 0.4 ‰ [PDB] for the least differentiated (coarse) sövite member, δ13C values slowly increase in the alvikite (−3.7 ± 0.6 ‰) and ankeritic fractions (−3.0 ± 1.1 ‰), whereas δ18O rises from 10.3 ± 1.7 ‰ [SMOW] to 17.5 ± 5.8 ‰ over the same sequence, reaching extremes between 20 and 28 ‰ in the latest generation of ankeritic carbonatite. While an apparent correlation between δ13C and δ18O over the δ18O range of 7–13 ‰ conforms with similar findings from other carbonatite complexes and probably reflects a Rayleigh fractionation process, the observed upsurge of 18O notably in the ankeritic member is demonstrably related to a late phase of low-temperature hydrothermal activity involving large-scale participation of 18O-depleted groundwaters. As a whole, the Amba Dongar carbonatite province displays the characteristic 13C/12C label of deep-seated (primordial) carbon, reflecting the carbon isotope composition of the subcontinental upper mantle below the Narmada Rift Zone of the Indian subcontinent.  相似文献   

11.
Chemical and isotopic compositions have been measured on 62 microbial gases from Tertiary hemipelagic sediments in the Middle America Trench off Guatemala and from decaying kelp and surf grass currently accumulating in Scripps Submarine Canyon off southern California. Gases from the Middle America Trench have been generated primarily by the reduction of carbon dioxide; methane δ13C varies from −84‰ to −39‰, methane δD varies from −208‰ to −145‰, and carbon dioxide δ13 C varies from −27‰ to +28‰. Gases from Scripps Submarine Canyon have been generated primarily by acetate dissimilation; methane δ13 C varies from −63‰ to −43‰, methane δD varies from −331‰ to −280‰, and carbon dioxide δ13C varies from −17‰ to +3‰.Methane δ13C values as heavy as −40‰ appear to be uncommon for gases produced by carbon dioxide reduction and, in the Middle America Trench, are associated with unusually positive carbon dioxide δ13C values. However, based on the 25‰ intramolecular fractionation between acetate car☐yl carbon and methyl carbon estimated from the Scripps Submarine Canyon data, methane produced by acetate dissimilation may commonly have heavy δ13C values. The δD of methane derived from acetate is more negative than natural methanes from other origins. Microbial methane δD values appear to be controlled primarily by interstitial water δD and by the relative proportions of methane derived from carbon dioxide and acetate.The chemical and isotopic compositions of microbial gas and thermogenic gas overlap, making it difficult to determine the origins of many commercial natural gases from methane δ13C and C2+ hydrocarbon concentrations alone. Measurements of methane δD and carbon dioxide δ13C can provide useful additional information, and together with ethane δ13C data, help identify gases with mixed microbial and thermogenic origins.  相似文献   

12.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

13.
Stable carbon isotopes have been frequently used to indicate carbon pools and processes in soils, plants, and the atmosphere. Carbon isotope compositions are particularly useful in partitioning soil carbon sources between C3 and C4 vegetation because of the distinct δ13C distributions for C3 and C4 vegetation. Remote sensing is a powerful tool used to identify ecosystem patterns and processes at larger scales. A union of these two approaches would hold promise for spatially continuous estimates of carbon isotope compositions. In the current study, a framework is presented for using high spatial resolution remote sensing to predict soil δ13C distributions across a southern Africa savanna ecosystem. The results suggest that if the vegetation–soil δ13C relationship can be established, soil δ13C distributions can be estimated by high-resolution satellite images (e.g., IKONOS, Quickbird). Despite limitations remote sensing is a promising tool to expand estimates of terrestrial δ13C spatial patterns and dynamics.  相似文献   

14.
Carbon isotope chemostratigraphy has been used for worldwide correlation of Precambrian/Cambrian (Pc/C) boundary sections, and has elucidated significant change of the carbon cycle during the rapid diversification of skeletal metazoa (i.e. the Cambrian Explosion). Nevertheless, the standard δ13C curve of the Early Cambrian has been poorly established mainly due to the lack of a continuous stratigraphic record. Here we report high-resolution δ13C chemostratigraphy of a drill core sample across the Pc/C boundary in the Three Gorge area, South China. This section extends from an uppermost Ediacaran dolostone (Dengying Fm.), through a lowermost Early Cambrian muddy limestone (Yanjiahe Fm.) to a middle Early Cambrian calcareous black shale (Shuijingtuo Fm.). As a result, we have identified two positive and two negative isotope excursions within this interval. Near the Pc/C boundary, the δ13Ccarb increases moderately from 0 to + 2‰ (positive excursion 1: P1), and then drops dramatically down to − 7‰ (negative excursion 1: N1). Subsequently, the δ13Ccarb increases continuously up to about + 5‰ at the upper part of the Nemakit–Daldynian stage. After this positive excursion, δ13Ccarb sharply decreases down to about − 9‰ (N2) just below the basal Tommotian unconformity. These continuous patterns of the δ13C shift are irrespective of lithotype, suggesting a primary origin of the record. Moreover, the obtained δ13C profile, except for the sharp excursion N2, is comparable to records of other sections within and outside of the Yangtze Platform. Hence, we conclude that the general feature of our δ13C profile best represents the global change in seawater chemistry. The minimum δ13C of the N1 (− 7‰) is slightly lower than carbon input from the mantle, thus implying an enhanced flux of 13C-depleted carbon just across the Pc/C boundary. Hence, the ocean at that time probably became anoxic, which may have affected the survival of sessile or benthic Ediacaran biota. The subsequent δ13C rise up to + 5‰ (P2) indicates an increase of primary productivity or an enhanced rate of organic carbon burial, which should have resulted in lowering pCO2 and following global cooling. This scenario accounts for the cause of the global-scale sea-level fall at the base of the Tommotian stage. The subsequent, very short-term, and exceptionally low δ13C (− 9‰) in N2 could have been associated with the release of methane from gas hydrates due to the sea-level fall. The inferred dramatic environmental changes (i.e., ocean anoxia, increasing productivity, global cooling and subsequent sea-level fall with methane release) appear to coincide with or occur just before the Cambrian Explosion. This may indicate synchronism between the environmental changes and rapid diversification of skeletal metazoa.  相似文献   

15.
Sulfur and carbon contents and isotope ratios are reported for five Archean iron-formations, Helen, Nakina and Finlayson, Lumby and Bending Lake areas, distributed across 850 km of the Canadian shield all 2.7 Ga-old.A δ34S profile through a complete stratigraphic column (oxide facies excluded) of the Helen iron-formation shows a δ34S range of 30.2‰, mean δ34S value of 2.5‰ and a standard deviation (δi) of 7.3‰ In sharp contrast to the sulfide and siderite facies, the oxide facies in the column shows a uniform δ34S value close to zero. The δ34S values obtained for the other four iron-formations are again wide ranging, highly variable in the sulfide and pyrite—siderite facies, but uniform and close to zero for the oxide facies.The carbon in the oxide, siderite, chert facies has δ13C values of +2.3 to −1.1‰ in the range of Phanerozoic marine carbonates. However, the carbonates in the graphite rich sulfide facies have δ13C values as low as −7.6‰. The mixing of reduced carbon with marine carbonate is suggested to explain the light carbonate values. The reduced carbon associated with the light carbonate is also relatively light at up to δ13Corg = 33.5‰, but is in the range of other Precambrian values. Distal, high temperature, abiogenic sulfate reduction as a source of highly fractionated sulfides in the Archean iron-formations is ruled out on the basis of both isotopic and geologic evidence. It is concluded that only the bacterial reduction of sulfate at low temperatures could produce the wide ranging, highly variable δ34S values exhibited by these sulfides over large areas.  相似文献   

16.
The stable isotope compositions of organic carbon and nitrogen, the contents of organic carbon and nitrogen and C/N ratios for two cores recovered from the Empakai Crater at water depths of 11 and 20 m are used to document climatic changes in northern Tanzania. Eight 14C AMS dates determined on total organic matter (OM) indicate that the sedimentation rate in this lake is about 30 cm/ka for the late Pleistocene to early Holocene period. There are differences in the δ13C values of organic carbon between the two cores, which may be a result of differences in location from the present shoreline and of different water depths. In the deeper-water core the δ13C values show a general downcore decrease to the base of the core with a sharp change to lower values of about 4‰ at a depth of 100 cm (8.7 ka). The general trend of downcore decrease in 13C values can be attributed either to a systematic decrease in the relative proportion of C4 type of OM, owing to an increase in precipitation and change in vegetation cover from grassland to forest, or to utilization of isotopically enriched carbon during photosynthesis. The δ15N values show a general downcore increase with again a sharp change of about 5‰ to lower values at about 8.7 ka. A sharp change of about 5‰ and 4‰ to more depleted values at a depth of 100 cm of both 15N and 13C, respectively, suggests either hiatus or abrupt change in climatic condition from wetter conditions to drier conditions. There is enhanced preservation of OM in the lake as depicted by high mean values of organic carbon and nitrogen at both sites.  相似文献   

17.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

18.
Ordos Basin, the second largest sedimentary basin in China, contains enormous natural gas resources. Each of the four giant gas fields discovered so far in this basin (i.e., Sulige, Yulin, Wushenqi and Jingbian) has over 100 billion cubic meters (bcm) or 3.53 trillion cubic feet (tcf) of proven gas reserves. This study examines the stable carbon isotope data of 125 gas samples collected from the four giant gas fields in the Ordos Basin. Source rocks in the Upper Paleozoic coal measures are suggested by the generally high δ13C values of C1–C4 gaseous hydrocarbons in the gases from the Sulige, Yulin and Wushenqi gas fields. While the δ13CiC4 value is higher than that of the δ13CnC4, the dominant ranges for the δ13C1, δ13C2, and δ13C3 values in these Upper Paleozoic reservoired gases are −34 to −32‰, −27 to −23‰, and −25 to −24‰, respectively. The δ13C values of methane, benzene and toluene in gases from the Lower Paleozoic reservoirs of the Jingbian field indicate a significant contribution from humic source rocks, as they are similar to those in the Upper Paleozoic reservoirs of the Sulige, Yulin and Wushenqi gas fields. However, the wide variation and reversal in the δ13C1, δ13C2 and δ13C3 values in the Jinbian gases cannot be explained using a single source scenario, thus the gases were likely derived dominantly from the Carboniferous-Permian coal measures with some contribution from the carbonates in the Lower Permian Taiyuan Formation. The gas isotope data and extremely low total organic carbon contents (<0.2% TOC) suggest that the Ordovician Majiagou Formation carbonates are unlikely to be a significant gas source rock, thus almost all of the economic gas accumulations in the Ordos Basin were derived from Upper Paleozoic source rocks.  相似文献   

19.
δ13C data from Tethyan sections provide evidence of profound changes in the carbon cycle during the Lower Triassic. Sections from the Panthalassa realm were investigated to establish whether these variations are also present there. In the Jurassic accretionary wedges in Japan, exotic blocks having a Panthalassan affinity, have been incorporated. The majority of the blocks are pelagic cherts but rare shallow-water carbonates are also present. We present a δ13C study on the Lower Triassic of a shallow-water carbonate succession deposited on a mid-oceanic seamount and accreted to the Chichibu Belt, Japan. Two sections have been measured at Kamura, central Kyushu Island. The carbon isotope curve shows depleted values across the Permian–Triassic boundary (PTB), subsequently followed by an increase to heavier values into the Dienerian, culminating in a maximum of almost +4‰ V-PDB, before a steep drop at a stratigraphic gap. Low values are recorded in the Smithian, but rise to enriched δ13C values > +3.5‰ near the Smithian–Spathian boundary. The observed trend of the stable carbon isotope curve from Japanese sediments mirrors the curves derived from sections in the Tethys (e.g. Italy, Iran, Turkey, Oman and the South China Nanpanjing Basin). Our results support the interpretation of this curve as representing a global trend across the PTB and in the Lower Triassic, although some distinct features are absent around the Dienerian/Smithian boundary. Profound variations of the carbon isotope curve in the Lower Triassic are presented for the first time from a marine section outside of the Tethys. They indicate severe, global changes in the Lower Triassic carbon cycle, and the causative processes must have significantly contributed to the delayed biotic recovery after the PTB. Large amounts of carbon were shifted between carbon reservoirs, most probably between shallow- and deep-ocean waters, and/or ocean and sediment. Anoxia followed by overturn of the ocean water masses may have been the mechanism which quickly altered ecological conditions in the ocean leading to variable availability of nutrients and oxygen, and changes in isotope composition of the available carbon in the surface waters that was incorporated in the precipitated carbonate.  相似文献   

20.
Late Pleistocene terrestrial climate records in India may be preserved in oxygen and carbon stable isotopes in pedogenic calcrete. Petrography shows that calcrete nodules in Quaternary sediments of the Thar Desert in Rajasthan are pedogenic, with little evidence for postpedogenic alteration. The calcrete occurs in four laterally persistent and one nonpersistent eolian units, separated by colluvial gravel. Thermoluminescence and infrared- and green-light-stimulated luminescence of host quartz and feldspar grains gave age brackets for persistent eolian units I–IV of ca. 70,000–60,000, ca. 60,000–55,000, ca. 55,000–43,000, and ca. 43,000–25,000 yr, respectively. The youngest eolian unit (V) is <10,000 yr old and contains no calcrete. Stable oxygen isotope compositions of calcretes in most of eolian unit I, in the upper part of eolian unit IV, and in the nonpersistent eolian unit, range between −4.6 and −2.1‰ PDB. These values, up to 4.4‰ greater than values from eolian units II and III, are interpreted as representing nonmonsoonal18O-enriched “normal continental” waters during climatic phases when the monsoon weakened or failed. Conversely, 25,000–60,000-yr-old calcretes (eolian units II and III) probably formed under monsoonal conditions. The two periods of weakened monsoon are consistent with other paleoclimatic data from India and may represent widespread aridity on the Indian subcontinent during isotope stages 2 and 4. The total variation in δ13C is 1.7‰ (0.0–1.7‰), and δ13C covaries positively and linearly with δ18O. δ13C values are highest when δ18O values indicate the most arid climatic conditions. This is best explained by expansion of C4grasses at the expense of C3plants at low latitudes during glacial periods when atmosphericpCO2was lowered. C4dominance was overridingly influenced by global change in atmosphericpCO2despite the lowered summer rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号