首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Partially dolomitized carbonate successions provide a good opportunity to understand the commonly multistage process of dolomitization. Petrographic methods, fluid inclusion microthermometry and stable isotope measurements were applied to reconstruct the diagenetic evolution and dolomitization of a partially dolomitized Carnian reef limestone from the Transdanubian Range, Hungary. The diagenetic history began with reef diagenesis and formation of dolomite micro‐aggregates in microbial fabric elements; this was followed by the development of euhedral porphyrotopic dolomite crystals through overgrowths around the previously formed dolomite micro‐aggregates during the earliest burial stage. Increasing burial resulted in the extension of the dolomite patches via formation of finely crystalline replacement dolomite. From the Late Norian, when the Carnian reef carbonates reached the depth of 1·0 to 1·8 km, the diagenetic evolution continued in an intermediate to deep‐burial setting. Contemporaneously, an extensional regime was established, leading to fracturing. The progressive burial resulted in the recrystallization of the pre‐existing dolomite with increasing temperature, while saddle dolomite cement was precipitated in fractures. In connection with the Alpine Orogeny, intense denudation took place during the Late Cretaceous, accompanied by fracturing. Similar tectonically controlled denudation and fracturing occurred in several stages during the Cenozoic. As a result of these processes, the studied Carnian carbonates were raised to a near‐surface position or became subaerially exposed, leading to dedolomitization of the last dolomite phase and precipitation of calcite cement in cavities and fractures. This study revealed that by investigating partially and selectively dolomitized rock types, it is possible to document and understand those stages of the multiple dolomitization process which can barely be detected in the completely dolomitized rock bodies. Recognition of the dolomitization phases could provide the basis for the analysis of their relations with the depositional, diagenetic and tectonic processes, and stages of basin evolution.  相似文献   

2.
It has long been recognized that the Arab‐D reservoir in Ghawar field has been significantly dolomitized and that the distribution of dolomites is highly heterogeneous across this reservoir. Previous studies indicated that dolomite occurs with either a stratigraphic or non‐stratigraphic distribution; when mapped, dolomite tends to form several parallel linear trends across the field. Although stratigraphic dolomite was suggested to be formed early from highly evaporated pore fluids sourced from overlying evaporite deposits, non‐stratigraphic dolomite was thought to be generated primarily from hydrothermal fluids sourced from below. This study focuses primarily on these non‐stratigraphic dolomites, and proposes that: (i) these dolomites initially formed via seepage reflux, but were reinforced by late stage hydrothermal dolomitization; and (ii) reflux is also responsible for the formation of parallel, linear trends of dolomite. The reflux model hypothesizes that an evaporative lagoon (which is the source of dolomitizing fluids) formed during the falling stage systems tract of a depositional sequence, and that with continuing sea‐level fall this lagoon migrated progressively towards deeper parts of an intrashelf basin adjacent to the Ghawar field, leaving behind lines of dolomite bodies along a series of temporary coastlines. Two‐dimensional reactive transport models have been built to test this hypothesis, and have resulted in a predicted pattern of dolomite bodies that agrees with both the observed vertical distribution of non‐stratigraphic dolomite, as well as the mapped lateral distribution of the dolomite trends. In addition, the major ion compositions of Late Jurassic seawater are calculated based on fluid inclusion data in the literature. Using Jurassic seawater in current models leads to the absence of anhydrite cements and less potential of over‐dolomitization than using modern seawater.  相似文献   

3.
Burial hydrothermal dolomitization is a common diagenetic modification in sedimentary basins with implications for oil and gas reservoir performance. Outcrop analogues represent an easily accessible source of data to refine the genetic models and assess risk in hydrocarbon exploration and production. The Palaeozoic succession of northern Spain contains numerous excellent exposures of epigenetically dolomitized limestones, particularly in the Carboniferous and Cambrian. The epigenetic dolomites in the Cambrian carbonates of the Láncara Formation are volumetrically small, but have a large aerial distribution across different tectonic units of the Variscan fold and thrust belt. Coarse crystals, abundant saddle dolomite cement, negative δ18O and fluid inclusion homogenization temperatures between 80°C and 120°C characterize these dolomites, which are petrographically and geochemically similar to the tens of kilometre‐sized hydrothermal dolomites replacing the Upper Carboniferous succession in the same area. In both cases, the dolomitizing fluids are derived from highly evaporated sea water, modified to a limited degree through fluid‐rock interaction. The dolomitization events affecting both Cambrian and Carboniferous strata are probably related to the same post‐orogenic hydrothermal fluid flow. The formation of the post‐collisional (latest Carboniferous) Cantabrian arc fostered dolomitization: the extension related to bending of the arc generated deep‐reaching faults and strike‐slip movements, which favoured the circulation of hot dolomitizing fluids in the outer parts of this orocline. A similar dolomitization process affected other areas of Europe after the main stages of the Variscan orogeny. Dolomitization was a continuous, uninterrupted, isochemical process. Limestone replacement resulted in a major porosity redistribution and focused the fluid flow into the newly created porous zones. Replacement was followed immediately by partial to complete cementation of the pores (including zebra fabrics and vugs) with saddle dolomite. The amount of porosity left depends on the volume of cement and therefore on the volume of fluids available.  相似文献   

4.
Widespread dolomitization and leaching occur in the Asbian to Brigantian (Dinantian) sequence of the Bowland Basin. Within this mudrock-dominated succession, dolomite is developed in calcarenites and limestone breccia/conglomerates deposited in a carbonate slope environment (Pendleside Limestone) and also within graded quartz wackes deposited by density currents in a generally ‘starved’ basin environment (Pendleside Sandstone). The dolomitized intervals range in thickness from less than one metre to several tens of metres and have a stratabound nature. All stages of calcite cement pre-date dolomitization and calcite veins are dolomitized. Dolomite crystals replace neomorphic spar and may also contain insoluble residues that were concentrated along stylolites. Thus dolomitization was a late stage process within the carbonate diagenetic sequence. A late-stage diagenetic origin is also indicated within the sandstones, with dolomite post-dating the development of quartz overgrowths. Six main textural styles of dolomite are observed: (1) scattered; (2) mosaic; (3) subhedral to euhedral rhombic; (4) microcrystalline; (5) single crystal and (6) saddle. The style of dolomite developed is dependent on the host rock mineralogy, on whether it is space-filling or replacive and also on temperature. Chemically the dolomite varies from near stoichiometric compositions to ankeritic varieties containing up to 20 mole % FeCO3. Generally the dolomites have isotopic compositions depleted in δ18O compared to the host limestone, with similar or lighter δ13C values. Initial dolomite was of the scattered type, but with progressive replacement of the host a mosaic dolostone with a sucrosic texture was produced. There was a general increase in the Fe and Mn content and reduction in δ18O ratio of the crystals during dolomitization. Leaching is restricted to partly dolomitized horizons, where calcite, feldspars, micas, clays and, to some extent, dolomite have been leached. This has produced biomouldic and vuggy secondary porosity within the carbonates, whereas in the sandstones honeycombed, corroded and floating grains associated with oversized pores occur. Porosity within both carbonates and sandstones is reduced by ferroan dolomite/ankerite cements. Field, petrographic and chemical characteristics indicate that dolomitizing solutions were predominantly derived from the enclosing mudrocks (Bowland Shales) during intermediate/deep burial. Fluid migration out of the mudrocks would have been sided by dehydration reactions and overpressure, the fluids migrating along the most permeable horizons—the coarse grained carbonates and sandstones that are now dolomitized and contain secondary porosity.  相似文献   

5.
The Early Jurassic dolomitized carbonates are a hydrocarbon exploration target in Northern Italy. Of these carbonates, the Liassic Albenza Formation platform and the overlying Sedrina Formation shelf were studied to define a pervasive dolomitization model and to shed light on dolomite distribution in the sub‐surface. Field work, as well as analyses of well cores, stable isotopes, trace elements and fluid inclusions, was carried out on the outcropping thrust belt and sub‐surface deformed foreland of the Southern Alps. Petrographic analyses showed a first, pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3 and D4). The δ18O values fall between ?8·2‰ and 0·1‰ Vienna‐Pee Dee Belemnite with the more depleted samples belonging to dolomite cement‐rich dolostones; the δ13C ranges from 2·6‰ to 3·7‰ Vienna‐Pee Dee Belemnite. Analysis of trace elements showed different Fe and Mn contents in the sub‐surface and outcropping dolostones, and a higher Fe in the younger dolomite cements. An increase in the precipitation temperature (up to 130 °C from fluid inclusion data) and a decrease in diagenetic fluid salinity (from sea water to brackish) are observed from the first pervasive replacement dolomite to the dolomite cement phases. Field observations indicate that, in the Albenza Formation, dolomitization was limited to palaeohighs or faulted platform margins in the Early Jurassic carbonates. The pervasive replacement phase is interpreted based on a ‘compaction model’; the formation fluids expelled from compacting basinal carbonates could have funnelled along faults into permeable palaeohighs. The high homogenization temperature of the dolomite cements and decreased salinities indicate precipitation at great depth with an influx of meteoric water. These data, along with the thermal history, suggest that the dolomite cements precipitated according to the ‘tectonic squeegee’ dolomitization model. The dolomite precipitation temperature was set against the thermal history of the carbonate platform to interpret the timing of dolomite precipitation. The dolomite precipitation temperatures (90 to 100 °C) were reached in the studied formations first in the thrust fold belt (Early Tertiary, 60 Ma), and then in the foreland succession during the Late Tertiary (10 Ma). This observation suggests that the dolomite precipitation fronts moved southwards over time, recording a ‘diagenetic wave’ linked to the migration of the orogenic system. Observations suggest that the porosity increased during the first phase of replacement dolomitization while the dolomite cementation phases partially occluded the pores. The distribution of porous dolomitized bodies is therefore linked to the ‘compaction dolomitization’ model.  相似文献   

6.
湖相白云岩具有重要的油气地质意义,广泛发育于我国东部新生代地层中。本文通过大量资料统计和分析前人对国内湖相白云岩的研究成果,系统阐述了国内主要湖盆的湖相白云岩的成因、形成流体来源及相关物质的响应。根据白云石化流体的碳氧同位素、锶钡比、有序度、pH值、Eu异常、Ce异常等各类指标,将白云石化流体分为原始湖泊、外来淡水、热水热液和海源流体等类型。不同类型流体来源改造下生成白云岩所伴生的矿物组合不同;不同白云石化流体通过微生物作用、准同生作用、热液作用和埋藏作用等方式对原始碳酸盐岩进行白云石化作用,不同白云石化作用机制直接制约了其物质响应过程。提出了未来利用定量分析技术深入开展白云石化流体来源分析、准确判断成岩流体类型或成岩作用机制是进一步研究的方向。  相似文献   

7.
Abstract Interpretation of seepage reflux dolomitization is commonly restricted to intervals containing evaporites even though several workers have modelled reflux of mesosaline brines. This study looked at the partially dolomitized forereef facies of the Capitan Formation to test the extent of reflux dolomitization and evaluate the possible role of the near‐backreef mesosaline carbonate lagoon as an alternative source of dolomitizing fluids. The Capitan Formation forereef facies ranges from 10% to 90% dolomite. Most of the dolomite is fabric preserving and formed during early burial after marine cementation, before and/or during evaporite cementation and before stylolitization. Within the forereef facies, dolomite follows depositional units, with debris‐flow and grain‐flow deposits the most dolomitized and turbidity‐current deposits the least. The amount of dolomite increases with stratigraphic age and decreases downslope. Within the reef facies, dolomite is restricted to haloes around fractures and primary cavities except where the reef facies lacks marine cements and, in contrast, is completely dolomitized. This dolomite distribution supports dolomitization by sinking fluids. Oxygen isotopic values for fabric‐preserving dolomite (δ18O = 0·9 ± 1·0‰, N = 101) support dolomitization by sea water to isotopically enriched sea water. These values are closer to the near‐backreef dolomite (δ18O = 2·1 ± 0·7‰, N = 48) than the hypersaline backreef dolomite (δ18O = 3·6 ± 0·9‰, N = 11). Therefore, the fabric‐preserving dolomite is consistent with dolomitization during seepage reflux of mainly mesosaline brines derived from the near‐backreef carbonate lagoon. The occurrence of mesosaline brine reflux in the Capitan Formation has important implications for dolomitization in forereef facies and elsewhere. First, any area with a restricted carbonate lagoon may be dolomitized by refluxing brines even if there are no evaporite facies present. Secondly, such brines may travel significant distances vertically provided permeable pathways (such as fractures) are present. Therefore, the absence of immediately overlying evaporite or restricted facies is not sufficient cause to eliminate reflux dolomitization from consideration.  相似文献   

8.
白云岩化流体性质与成岩作用是近年来碳酸盐岩成岩作用研究的热点,研究白云岩的成因有利于进一步认识白云岩储层的形成机制并为优质储层的预测提供依据。通过岩石学、矿物学(X射线衍射)、地球化学(微量元素、稀土元素、碳氧同位素)方法,系统研究湖北秭归地区灯影组不同类型白云岩的成因,并分析了可能的白云岩化模式。样品的微量元素特征显示,秭归地区白云岩未受到陆源碎屑物质的影响,形成于气候干旱、海水咸度较大且氧化的沉积环境中;Sr含量特征显示白云岩发生了较为彻底的白云岩化,其成岩环境为温度较高的埋藏环境,成岩过程中未受到淋滤作用的影响;秭归地区白云岩化流体主要来源于海水。结合蒸发白云岩(萨布哈)及埋藏白云岩化模式解释了秭归地区泥微晶白云岩及晶粒白云岩的形成过程。  相似文献   

9.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   

10.
白云石化是碳酸盐典型的成岩作用类型之一,中-下奥陶统鹰山组浅海碳酸盐岩是塔河地区重要的含油气储层,普遍发育多种类型的白云石化作用。本文针对塔河地区鹰山组灰岩中沿缝合线分布这一特定类型的白云石化进行了研究。岩石学基础上的阴极发光分析、86Sr/87Sr比值以及δ13C-δ18O 的研究表明,这种类型的白云石化发育于相对还原的浅埋藏成岩环境,孔隙中的残留海水是主要的白云石化流体来源,碳酸盐矿物(主要是高镁方解石)稳定化过程中释放的Mg2+ 可能是白云石化主要的物质来源,而埋藏过程中逐渐升高的温度一定程度上也促进了白云石化的发生。成岩流体及Mg2+ 有限的供给量限制了白云石化作用的整体规模。显微结构与岩石物性分析表明,该类白云石化对储层物性参数的绝对贡献相对有限,但可能成为小规模油气运移以及深部热流体活动的潜在通道。  相似文献   

11.
川东北地区下三叠统飞仙关组为浅海碳酸盐岩夹泥页岩与蒸发岩序列,而在碳酸盐岩台地边缘通常发育一些白云石化的鲕粒滩。这些鲕粒滩白云岩储集层是川东北地区主要的产气层,一些学者认为该套白云岩为大气淡水与海水的混合水白云石化成因,另外一些学者将其视为回流—渗透白云石化成因。飞仙关组鲕粒滩白云岩稳定同位素氧值一般为-6.73‰~-3.65‰(PDB),平均值为-4.89‰(PDB)(罗家寨地区为-10.81‰(PDB)),稳定同位素碳值一般为+0.57‰~+3.00‰(PDB)。对基质和孔洞中充填的鞍状白云石和亮晶白云石胶结物而言,稳定同位素87Sr/86Sr值为0.70735~0.70800。这些有关鲕粒滩白云岩的数据表明白云石化作用是在埋藏条件下进行的。在测定流体包裹体的均一化温度后,计算出白云石化流体稳定同位素氧成分(δ18O白云石-δ18O=[3.2×106 T-2]-1.5,来自 Friedman 和 ONeil(1977)),其平均值约为+4‰(SMOW)。根据流体稳定同位素氧、碳成分与海水蒸发时流体盐度的正相关性,计算出流体δD平均值约为+25‰(SMOW)。流体包裹体盐度测定表明,白云石化流体是一种超盐度卤水,其盐度是海水的数倍,白云石化的温度为90~130℃。由于下三叠统鲕粒滩白云岩的稳定同位素氧和碳成分与上二叠统生物礁白云岩的稳定同位素氧和碳成分类似,因此,它们的白云石化流体很可能是同一来源。然而,这一结论还有待于进一步研究。  相似文献   

12.
This contribution describes the field geometry, petrography and geochemistry of a well-exposed dolomitization front in Upper Jurassic carbonates, and attempts to highlight the sedimentological, structural and relative sea-level controls on multiphase dolomitization and related diagenetic events. The data presented reflect the superposition of various diagenetic phases which have resulted in a single dolostone body, whose dimensions are well defined in the field. Local microbial intraclastic dolomites of Late Tithonian age accumulated in a hypersaline lagoon during relative sea-level fall. These pre-date beige hydrothermal dolostones (51 to 55 mol% CaCO3; δ 18O: −9·3 to −4·0‰ V-PDB; δ 13C: −1·5 to +2·1‰ V-PDB; 87Sr/86Sr: 0·70742; matrix porosity: ≈6%; Klinkenberg permeability: ≈0·5 mD), whose dolomitizing fluid circulated along faults and invaded the nearby facies. First, the burrows were dolomitized, then the bulk rocks, resulting in the investigated 'tongue'-shaped dolomite body. Upon Late Jurassic–Early Cretaceous uplift, near-surface water percolated through – and altered – the underlying beige dolostones. This event was followed by a ferroan dolomite cement phase, which occurred during further burial. This contribution, featuring a well-defined geometric pattern of a dolomitization front with a large petrographic and geochemical data set, may also serve as a case study illustrating the complexity of superimposed diagenetic processes which have to be taken into account in modelling exercises of multiphase hydrothermal dolomitization.  相似文献   

13.
The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity.  相似文献   

14.
Stratabound epigenetic dolomite occurs in carbonate facies of the Barrandian basin (Silurian and Devonian), Czech Republic. The most intense dolomitization is developed in bioclastic calcarenites within the transition between micritic limestone and shaledominated Přídolí and Lochkov formations deposited on a carbonate slope. Medium-crystalline (100–400 μm), inclusion-rich, xenotopic matrix dolomite (δ 18O=−4.64 to −3.40‰ PDB;δ 13C=+1.05 to +1.85‰ PDB) which selectively replaced most of the bioclastic precursor is volumetrically the most important dolomite type. Coarse crystalline saddle dolomite (δ 18O=−8.04 to −5.14‰ PDB;δ 18C=+0.49 to +1.49 PDB) which precipitated in fractures and vugs within the matrix dolomite represents a later diagenetic dolomitization event. In some vugs, saddle dolomite coprecipitated with petroleum inclusion-rich authigenic quartz crystals and minor sulfides which, in turn, were post-dated by semisolid asphaltic bitumen. The interpretation of the dolomitization remains equivocal. Massive xenotopic dolomite, although generally characteristic of a deeper burial setting, may have been formed by a recrystallization of an earlier, possibly shallow burial dolomite. Deeper burial recrystallization by reactive basinal pore fluids that presumably migrated through the more permeable upper portion of the Přídolí sequence appears as a viable explanation for this dolomitization overprint. Saddle dolomite cement of the matrix dolomite is interpreted as the last dolomitization event that occurred during deep burial at the depth of the oil window zone. The presence of saddle dolomite, the fluid inclusion composition of associated quartz crystals, and vitrinite paleogeothermometry of adjacent sediments imply diagenetic burial temperatures as high as 160°C. Although high geothermal gradients in the past or the involvement of hydrothermally influenced basinal fluids can account for these elevated temperatures, burial heating beneath approximately 3-km-thick sedimentary overburden of presumably post-Givetian strata, no longer preserved in the basin, appears to be the most likely interpretation. This interpretaion may imply that the magnitude of post-Variscan erosion in the Barrandian area was substantially greater than previously thought.  相似文献   

15.
In the Maritime Alps (north‐west Italy – south‐east France), the Middle Triassic–lowermost Cretaceous platform carbonates of the Provençal Domain locally show an intense dolomitization. Dolomitized bodies, irregularly shaped and variable in size from some metres to hundreds of metres, are associated with tabular bodies of dolomite‐cemented breccias, cutting the bedding at a high angle, and networks of dolomite veins. Field and petrographic observations indicate that dolomitization was a polyphase process, in which episodes of hydrofracturing and host‐rock dissolution, related to episodic expulsion of overpressured fluids through faults and fracture systems, were associated with phases of host‐rock dolomitization and void cementation. Fluid inclusion analysis indicates that dolomitizing fluids were relatively hot (170 to 260°C). The case study represents an outstanding example of a fossil hydrothermal system, which significantly contributes to the knowledge of such dolomitization systems in continental margin settings. The unusually favourable stratigraphic framework allows precise constraint of the timing of dolomitization (earliest Cretaceous) and, consequently, direct evaluation of the burial setting of dolomitization which, for the upper part of the dolomitized succession, was very shallow or even close to the surface. The described large‐scale hydrothermal system was probably related to deep‐rooted faults, and provides indirect evidence of a significant earliest Cretaceous fault activity in this part of the Alpine Tethys European palaeomargin.  相似文献   

16.
Dolomites occur extensively in Cambrian to Lower Ordovician carbonates in the Tienshan orogen of the Quruqtagh area, north‐east Tarim Basin, where thick (up to 1 km), dark grey lenticular limestones of semi‐pelagic to pelagic origin are prominent. The dolomites generally occur as beige, anastomosed geobodies that cross‐cut well‐stratified limestones. Based on detailed field investigations and petrographic examination, three types of matrix dolomite are identified: fine crystalline planar‐e (Md1), fine to medium crystalline planar‐s (e) (Md2) and fine to coarse crystalline non‐planar‐a (Md3) dolomites. One type of cement dolomite, the non‐planar saddle dolomite (Cd), is also common. The preferential occurrence of Md1 along low‐amplitude stylolites points to a causal link to pressure dissolution by which minor Mg ions were probably released for replacive dolomitization during shallow burial compaction. Type Md2, Md3 and Cd dolomites, commonly co‐occurring within the fractured zones, have large overlaps in isotopic composition with that of host limestone, implying that dolomitizing fluids inherited their composition from remnant pore fluids or were buffered by the formation water of host limestones through water–rock interaction. However, the lower δ18O and higher 87Sr/86Sr ratios of these dolomites also suggest more intense fluid–rock interaction at elevated temperature and inputs of Mg and radiogenic Sr from the host limestones with more argillaceous matter and possibly underlying Neoproterozoic siliciclastic strata. Secondary tensional faults and fractures within a compressional tectonic regime were probably important conduits through which higher‐temperature Mg‐rich fluids that had been expelled from depth were driven by enhanced tectonic compression and heating during block overthrusting, forming irregular networks of dolomitized bodies enclosed within the host limestones. This scenario probably took place during the Late Hercynian orogeny, as the Tarim block collided with Tienshan island arc system to the north and north‐east. Subsequent downward recharges of meteoric fluids into the dolomitizing aquifer probably terminated dolomitization as a result of final closure of the South Tienshan Ocean (or Palaeo‐Asian Ocean) and significant tectonic uplift of the Tienshan orogen. This study demonstrates the constructive role of notably tensional (or transtensional) faulting/fracturing in channelling fluids upward as a result of intense tectonic compression and heating along overthrust planes on the convergent plate margin; however, a relatively short‐lived, low fluid flux may have limited the dolomitization exclusively within the fractured/faulted limestones in the overthrust sheets.  相似文献   

17.
This study investigates the geometries of fault-controlled dolostone geobodies and their structural and sequence stratigraphic controls, which provide new insights for the prediction and production of fault-controlled dolomitized hydrocarbon reservoirs. A very thick succession (>1600 m) of Aptian–Albian shallow-marine carbonates of the Benassal Formation that crop out in the Benicàssim area (Maestrat Basin, eastern Spain) is partly replaced by dolomite, resulting in dolostone geometries ranging from massive patches to stratabound bodies. Detailed mapping, systematic logging and correlation were carried out to characterize the structural, sedimentary and sequence stratigraphic framework of the area and to constrain the principal controls on the full-range of dolostone geometries. The results show that carbonate sediments accumulated in a half graben stacked in three transgressive–regressive sequences. Large-scale massive dolostone patches (with up to kilometre extension) formed near large-scale faults indicating that they acted as entry points for warm dolomitizing fluids into the basin. These dolostone patches laterally pass to large stratabound bodies that extend for long distances (at least 7 km) away from feeding faults, forming a continuum. The presence of a regional unconformity and a clastic fine-grain low-permeability unit (Escucha Formation) on top of the Benassal Formation likely constrained the dolomitization fluids to an up to 580 m thick interval below the base of the Escucha Formation. Thus, only limestones within this interval, corresponding to the two uppermost transgressive–regressive sequences, were dolomitized. There is a clear relationship between the stratigraphic framework and the preferred replaced beds. Dolomitization preferentially affected sediments deposited in inner to middle ramp settings with predominant wackestone to packstone textures. Such facies are laterally most abundant in the east of the study area (i.e. basinward) and vertically in layers around the maximum flooding zone of the top sequence, which is preferentially affected by dolomitization.  相似文献   

18.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

19.
张静  张宝民  单秀琴 《地质通报》2017,36(4):664-675
塔里木、四川及鄂尔多斯盆地是中国中西部海相白云岩的主要发育地区。三大盆地重点层系海相白云岩新近的成因研究表明,大规模准同生白云岩和埋藏成因白云岩的发育均与蒸发台地密切相关。蒸发台地中由海水浓缩形成的富Mg~(2+)卤水一方面在准同生期,通过蒸发泵和下渗机制交代碳酸钙沉积物而形成与蒸发岩共生的准同生白云岩,另一方面作为富含Mg~(2+)的地层孔隙水,在准同生-浅埋藏期乃至中、深埋藏期,通过侧向渗透、侧向与垂向压实排挤和垂向热对流机制与粗结构的碳酸钙沉积物发生交代反应,在蒸发岩系周边和上下形成广泛分布的埋藏成因白云岩。与热流体作用有关的白云石化主要依靠构造断裂、裂缝、不同级次的层序界面、孔洞层等输导体系发生,分布较局限。热流体云化常表现为对先期白云岩进行叠加改造而形成热水改造白云岩。热流体性质不一,可以是深埋藏混合热水、深部循环水、地幔深部的岩浆热液等。白云石(岩)的生物成因不仅表现为微生物作用导致白云石直接沉淀,还表现为生物的存在与活动为白云石化作用提供Mg~(2+)和云化流体通道。由微生物和宏观藻释放出Mg~(2+),在埋藏期对方解石进行交代是各种富含藻类的灰岩中部分白云石的重要形成机制。生物扰动可明显改善岩石的孔渗性,从而显著促进白云石化作用的发生。  相似文献   

20.
《Sedimentology》2018,65(1):209-234
Dolomites of varied ages exhibit metre‐scale nested patterns of lateral periodic variation in permeability and porosity and, by inference, dolomite abundance as most examples are 100% dolomite. Two‐dimensional reaction–transport modelling simulations of bed‐scale dolomitization were used to assess whether those patterns in dolomite abundance could form during near‐surface replacement dolomitization. Simulations used a 2 m high and 18 m long model domain, a low‐Mg calcite grainstone precursor and an evaporated Mississippian seawater brine (430 parts per thousand salinity) as the dolomitizing fluid. The domain was initially populated with random variations in porosity and/or grain size. Results reveal that spatial patterns in dolomite abundance emerge when there is as little as 1% dolomite formed, with similarities between the modelled patterns and outcrop‐documented patterns. The nested patterns include a near‐random component that constitutes ≤40% of the total variance, short‐range correlation ranging from 1·5 to 3·3 m and a longer‐range periodic trend with a wavelength up to 6·5 m. The emergence of pattern in dolomite abundance is the result of an autogenic self‐organizing phenomenon. It is triggered by variation in initial calcite reactive surface area that occurs due to the random heterogeneities in initial porosity and/or grain sizes. The pattern develops due to a combination of kinetic disequilibrium reactions (dolomite precipitation and calcite dissolution) and positive feedbacks between dolomite growth, calcite dissolution and fluid flow. Flow is around loci of higher dolomite, lower porosity and higher reactive surface areas, but through loci of lower dolomite, higher porosity and lower reactive surface areas. The resulting less porous/more dolomite and more porous/less dolomite structures at the metre‐scale arise from those localized interactions. This self‐organizing mechanism for pattern formation constitutes a new model for geochemical self‐organization during dolomitization and is the only self‐organization model that is proven applicable to the formation of metre‐scale patterns during early, near‐surface dolomitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号