首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-impact mesoscale weather events, occurring in different parts of India in all seasons, lead to major weather- and climate-related disasters. Several research groups and operational weather forecasting centres in India have adopted mesoscale models for research and operational usage. This paper reviews the work done by different groups with respect to two specific events, (1) unprecedented locally heavy rainfall near Mumbai (Santa Cruz) on 26 and 27 July 2005 and (2) the Orissa super-cyclone of 29 and 30 October 1999 from its incipient stage on 24 and 25 October 1999. Considerable variability in the prediction of the intensity and location of mesoscale heavy rainfall, as well as in the intensity and path of the super-cyclone, are found. In order to reduce uncertainty in dynamical prediction, it is necessary that the model dynamics, physics, resolution, boundary conditions and availability of data on land–ocean surface processes are tuned separately to the specific event types, such as heavy monsoon rainfall, tropical cyclone genesis and movement and severe local thunderstorms, as the processes controlling such types of events may require suitable treatments for their proper simulations through appropriate dynamics, physics and resolution.  相似文献   

2.
马素艳  李林惠 《冰川冻土》2017,39(3):534-539
利用呼和浩特市1961-2010年6个国家气象观测站逐小时降水量资料,应用数理统计、滑动平均和M-K突变检验分析了呼和浩特市短时强降水时空分布特。结果表明:呼和浩特市短时强降水频次的空间分布不均匀,主要分布在呼和浩特市南部及山脉迎风坡;呼和浩特市短时强降水具有明显的季节变化和日变化特征,短时强降水频次最高在7月下旬和8月上旬,最容易发生在午后至傍晚,年代和年变化显示20世纪90年代为正距平,1993年之后,呼和浩特市短时强降水次数呈上升趋势,1997年通过显著性检验水平临界线,即呈明显上升趋势,1998年达到峰值。  相似文献   

3.
Most urban agglomerations located in the Mumbai coastal region in India are vulnerable to flooding due to increasing frequency of the short-duration heavy rainfall, by virtue of their location at foothills on one side and tidal variations on the other side. Steep slopes in the catchment ensure fast runoff and tidal variation adds to backwater effect in the drainage system, which together are favorable for flooding. The present study simulates the flood inundation due to heavy rainfall and high-tide conditions in a coastal urban catchment within Mumbai region with detention pond. Overland flow is modeled using a mass balance approach, which can adapt to hilly slopes and smoothly accommodate detention pond hydraulics. Dynamic wave channel routing based on finite element method captures the backwater effects due to tidal variation, and raster-based flood inundation model enables direct use of digital elevation model. The integrated model is capable of simulating detention pond hydraulics within the raster flood model for heavy rainfall events. The database required for the model is obtained from the geographical information system (GIS) and remote sensing techniques. Application of the integrated model to literature problems and the catchment of the study area for two non-flooding events gave satisfactory results. Further, the model is applied to an extreme rainfall event of July 26, 2005, coinciding with high-tide conditions, which revealed vulnerability of the area to flooding despite of an existing detention pond. A sensitivity analysis on the location of detention pond indicated that catchment response can be better governed by relocating the detention pond to upstream of existing detention pond especially when heavy rainfall events are becoming frequent.  相似文献   

4.
The summer monsoon season of the year 2006 was highlighted by an unprecedented number of monsoon lows over the central and the western parts of India, particularly giving widespread rainfall over Gujarat and Rajasthan. Ahmedabad had received 540.2mm of rainfall in the month of August 2006 against the climatological mean of 219.8mm. The two spells of very heavy rainfall of 108.4mm and 97.7mm were recorded on 8 and 12 August 2006 respectively. Due to meteorological complexities involved in replicating the rainfall occurrences over a region, the Weather Research and Forecast (WRF-ARW version) modeling system with two different cumulus schemes in a nested configuration is chosen for simulating these events. The spatial distributions of large-scale circulation and moisture fields have been simulated reasonably well in this model, though there are some spatial biases in the simulated rainfall pattern. The rainfall amount over Ahmedabad has been underestimated by both the cumulus parameterization schemes. The quantitative validation of the simulated rainfall is done by calculating the categorical skill scores like frequency bias, threat scores (TS) and equitable threat scores (ETS). In this case the KF scheme has outperformed the GD scheme for the low precipitation threshold.  相似文献   

5.
Obtaining an accurate initial state is recognized as one of the biggest challenges in accurate model prediction of convective events. This work is the first attempt in utilizing the India Meteorological Department (IMD) Doppler radar data in a numerical model for the prediction of mesoscale convective complexes around Chennai and Kolkata. Three strong convective events both over Chennai and Kolkata have been considered for the present study. The simulation experiments have been carried out using fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) mesoscale model (MM5) version 3.5.6. The variational data assimilation approach is one of the most promising tools available for directly assimilating the mesoscale observations in order to improve the initial state. The horizontal wind derived from the DWR has been used alongwith other conventional and non-conventional data in the assimilation system. The preliminary results from the three dimensional variational (3DVAR) experiments are encouraging. The simulated rainfall has also been compared with that derived from the Tropical Rainfall Measuring Mission (TRMM) satellite. The encouraging result from this study can be the basis for further investigation of the direct assimilation of radar reflectivity data in 3DVAR system. The present study indicates that Doppler radar data assimilation improves the initial field and enhances the Quantitative Precipitation Forecasting (QPF) skill.  相似文献   

6.
《Comptes Rendus Geoscience》2008,340(9-10):621-628
Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21st century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research.  相似文献   

7.
Micro-meteorological tower observations of MONTBLEX (Monsoon Trough Boundary Layer Experiment)-1990, combined with routine surface observations at Jodhpur in the dry convective sector of Indian summer monsoon trough are used to examine the interrelationship between total cloud cover (TCC) and surface sensible heat flux (SHF) during the summer monsoon of 1990. A significant inverse relationship between TCC and SHF is found during various Intensive Observation Periods of the experiment. This relationship holds for the various methods of estimation of SHF.  相似文献   

8.
王丽娜  王若升  李常德 《冰川冻土》2014,36(6):1450-1455
利用甘肃平凉地区7个气象自动站1965-2012年的逐日气象整编资料, 统计出近48 a来大雪天气出现次数, 分析了平凉大雪天气的统计特征和气候变化规律, 然后用近14 a历史天气图资料对31次大雪过程进行对比分型, 总结出三类天气形势的特征. 结果表明: 1965-2012年48 a来, 平凉大雪天气出现次数总体变化趋势不显著; 大雪天气多集中出现在秋冬、冬春冷暖季节交替的时期, 冬春交替期间出现次数多于秋冬交替期间, 隆冬季节出现次数相对较少. 平凉产生大雪天气的主要天气形势有三类: 高原低槽型、西风带小槽型和阻高-横槽型, 三类形势中最多的是高原低槽型, 其他两类出现概率相差不到10个百分点.  相似文献   

9.
This paper investigates the characteristic features of the coastal atmospheric boundary layer (CABL) along the west coast of India during the south-west monsoon (SWM) 2002. Extensive surface and upper-air findings were obtained during the same period from the Arabian Sea Monsoon Experiment (ARMEX; 15th June to 15th August 2002) 2002. The operational general circulation model (GCM) of the National Centre for Medium Range Weather Forecasting (NCMRWF) was used in this study to see the spatial variation of the CABL during two specific convective episodes that led to heavy rainfall along the west coast of India. The impact of a non-local closure (NLC) scheme employed in the NCMRWF GCM was carried out in simulating the CABL. The same episodes were also simulated using a similar parameterization scheme employed in the high resolution mesoscale modelling system (MM5). The diurnal variation of CABL is better represented from MM5 simulation. Comparing the MM5 simulation with that of the coarser grid NCMRWF GCM, we observed that the NCMRWF GCM underestimates the values of both latent heat flux (LHF) and the coastal atmospheric boundary layer height (CABLH). Results from MM5 therefore indicate that the best way to move forward in addressing the short-comings of coarse grid-scale GCMs is to provide a parameterization of the diurnal effects associated with convection processes.  相似文献   

10.
Prediction of heavy rainfall events due to severe convective storms in terms of their spatial and temporal scales is a challenging task for an operational forecaster. The present study is about a record-breaking heavy rainfall event observed in Pune (18°31′N, 73°55′E) on October 4, 2010. The day witnessed highest 24-h accumulated precipitation of 181.3 mm and caused flash floods in the city. The WRF model-based real-time weather system, operating daily at Centre for Development of Advanced Computing using PARAM Yuva supercomputer showed the signature of this convective event 4-h before, but failed to capture the actual peak rainfall and its location with reference to the city’s observational network. To investigate further, five numerical experiments were conducted to check the impact of assimilation of observations in the WRF model forecast. First, a control experiment was conducted with initialization using National Centre for Environmental Prediction (NCEP)’s Global Forecast System 0.5° data, while surface observational data from NCEP Prepbufr system were assimilated in the second experiment (VARSFC). In the third experiment (VARAMV), NCEP Prepbufr atmospheric motion vectors were assimilated. Fourth experiment (VARPRO) was assimilated with conventional soundings data, and all the available NCEP Prepbufr observations were assimilated in the fifth experiment (VARALL). Model runs were compared with observations from automated weather stations (AWS), synoptic charts of Indian Meteorological Department (IMD). Comparison of 24-h accumulated rainfall with IMD AWS 24-h gridded data showed that the fifth experiment (VARALL) produced better picture of heavy rainfall, maximum up to 251 mm/day toward the southern side, 31 km away from Pune’s IMD observatory. It was noticed that the effect of soundings observations experiment (VARPRO) caused heavy precipitation of 210 mm toward the southern side 49 km away from Pune. The wind analysis at 850 and 200 hPa indicated that the surface and atmospheric motion vector observations (VARAMV) helped in shifting its peak rainfall toward Pune, IMD observatory by 18 km, though VARALL over-predicted rainfall by 60 mm than the observed.  相似文献   

11.
Sea-breeze-initiated convection and precipitation have been investigated along the east coast of India during the Indian southwest monsoon season. Sea-breeze circulation was observed on approximately 70–80% of days during the summer months (June–August) along the Chennai coast. Average sea-breeze wind speeds are greater at rural locations than in the urban region of Chennai. Sea-breeze circulation was shown to be the dominant mechanism initiating rainfall during the Indian southwest monsoon season. Approximately 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to convection initiated by sea-breeze circulation.  相似文献   

12.
The cloudburst is defined as a heavy downpour at a very high rainfall rate over small spatio-temporal scale. The Indian states of Uttarakhand (30°15′N; 79°15′E) and Himachal Pradesh (32°29′N; 75°10′E) are prone to cloudburst due to its geographical setup. The large-scale monsoon flow along with elevated orography makes cloudburst phenomena frequent a well as severe over the regions. However, cloudburst and the heavy rainfall events occasionally, become difficult to distinguish. The present study attempts to identify the processes associated with cloudburst over elevated orography and compare it with one of the most debated event of 2013 which was reported as heavy rainfall but, not a cloudburst by Indian Meteorological Department (IMD). The temporal variations of rainfall and cloud-top pressure (CTP) are considered to identify the genesis of the event. The vertical developments of the system along with large-scale circulation pattern are estimated in the present study. The result of the study reveals that the mid-tropospheric dry entrainment, low-level temperature inversion and cloud height clearly distinguish the “cloudburst” and “heavy rainfall” events and confirms that the system of 2013 was indeed a heavy rainfall event and not a cloudburst.  相似文献   

13.
Impact of climate change on extreme rainfall events and flood risk in India   总被引:8,自引:0,他引:8  
The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to study long-term changes in extreme rainfall over India. The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts of central and north India while they are increasing in peninsular, east and north east India. The study tries to bring out some of the interesting findings which are very useful for hydrological planning and disaster managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts of central India.  相似文献   

14.
Meteorological impacts of El Niño events of 1982–1983 and 1997–1998 were observed in locations throughout the world. In southern Brazil, El Niño events are associated with increased rainfall and higher freshwater discharge into Patos Lagoon, a large coastal lagoon that empties into the Atlantic Ocean. Based on interdecadal meteorological and biological data sets encompassing the two strongest El Niño events of the last 50 yr, we evaluated the hypothesis that El Niño-induced hydrological changes are a major driving force controlling the interannual variation in the structure and dynamics of fishes in the Patos Lagoon estuary. High rainfall in the drainage basin of the lagoon coincided with low salinity in the estuarine area during both El Niño episodes. Total rainfall in the drainage basin was higher (767 versus 711 mm) and near-zero salinity conditions in the estuarine area lasted about 3 mo longer during the 1997–1998 El Niño event compared with the 1982–1983 event. Hydrological changes triggered by both El Niño events had similar relationships to fish species composition and diversity patterns, but the 1997–1998 event appeared to have stronger effects on the species assemblage. Although shifts in species composition were qualitatively similar during the two El Niño events, distance between El Niño and non-El Niño assemblage multivariate centroids was greater during the 1996–2000 sampling period compared with the 1979–1983 period. We provide a conceptual model of the principal mechanisms and processes connecting the atmospheric-oceanographic interactions triggered by the El Niño phenomena and their effect on the estuarine fish assemblage.  相似文献   

15.
In the present study, the Advanced Research WRF (ARW) version 3.2.1 has been used to simulate the heavy rainfall event that occurred between 7 and 9 October 2007 in the southern part of Bangladesh. Weather Research and Forecast (WRF–ARW version) modelling system with six different microphysics (MP) schemes and two different cumulus parameterization (CP) schemes in a nested configuration was chosen for simulating the event. The model domains consist of outer and inner domains having 9 and 3 km horizontal resolution, respectively with 28 vertical sigma levels. The impacts of cloud microphysical processes by means of precipitation, wind and reflectivity, kinematic and thermodynamic characteristics of the event have been studied. Sensitivity experiments have been conducted with the WRF model to test the impact of microphysical and cumulus parameterization schemes in capturing the extreme weather event. NCEP FNL data were used for the initial and boundary condition. The model ran for 72 h using initial data at 0000 UTC of 7 October 2007. The simulated rainfall shows that WSM6–KF combination gives better results for all combinations and after that Lin–KF combination. WSM3–KF has simulated, less area average rainfall out of all MP schemes that were coupled with KF scheme. The sharp peak of relative humidity up to 300 hPa has been simulated along the vertical line where maximum updraft has been found for all MPs coupled with KF and BMJ schemes. The simulated rain water and cloud water mixing ratio were maximum at the position where the vertical velocity and reflectivity has also been maximum. The production of rain water mixing ratio depends on MP schemes as well as CP schemes. Rainfall depends on rain water mixing ratio between 950 and 500 hPa. Rain water mixing ratio above 500 hPa level has no effect on surface rain.  相似文献   

16.
To improve flood forecasting, the understanding of the atmospheric conditions associated with severe rainfall is crucial. We analysed the atmospheric conditions at Dhaka, Bangladesh, using upper-air soundings. We then compared these conditions with daily rainfall variations at Cherrapunjee, India, which is a main source of floodwater to Bangladesh, and a representative sample of exceptionally heavy rainfall events. The analysis focussed on June and July 2004. June and July are the heaviest rainfall months of the year at Cherrapunjee. July 2004 had the fourth-heaviest monthly rainfall of the past 31 years, and severe floods occurred in Bangladesh. Active rainfall periods at Cherrapunjee corresponded to “breaks” in the Indian monsoon. The monsoon trough was located over the Himalayan foothills, and strong westerly winds dominated up to 7 km at Dhaka. Near-surface wind below 1 km had southerly components, and the wind profile had an Ekman spiral structure. The results suggest that rainfall at Cherrapunjee strongly depends on the near-surface wind speed and wind direction at Dhaka. Lifting of the near-surface southerly airflow by the Meghalaya Plateau is considered to be the main contributor to severe rainfall at Cherrapunjee. High convective available potential energy (CAPE) also contributes to intense rainfall.  相似文献   

17.
With regard to extreme events, it is well documented that an intensity of about 1 mm/min already represents an extreme intensity. Under alpine conditions, a precipitation event with an intensity of 3 mm/min has occurred. Therefore, the rain gauges in this region have to be able to measure in this and even in higher intensity ranges. This study deals with basic automated tipping-bucket rain (TBR) gauge and Bulk precipitation samplers, which are able to hold more than 95 % of the cumulative rainfall, that are verified within the space of the week without losses during the extreme events and with minimal evaporation loss. Bulk samplers collected more rainfall than TBR gauges in 110 of 221 extreme events analysed over the past 10 years. In 17 extreme events, an underestimation greater than 10 % was evaluated. The objective was to single out the counting errors associated with TBR gauge, during extreme events, so as to help the understanding of the measured differences between instruments in the field. We want to determine whether the automated precipitation gauge can provide a reliable and precise measurement of precipitation with particular interest regarding heavy and extreme events.  相似文献   

18.
In consideration of large uncertainties in severe convective weather forecast, ensemble forecasting is a dynamic method developed to quantitatively estimate forecast uncertainty. Based on ensemble output, joint probability is a post-processing method to delineate key areas where weather event may actually occur by taking account of the uncertainty of several important physical parameters. An investigation of the environments of little rainfall convection and strong rainfall convection from April to September (warm season) during 2009-2015 was presented using daily disastrous weather data, precipitation data of 80 stations in Anhui province and NCEP Final Analysis (FNL) data. Through ingredients-based forecasting methodology and statistical analysis,four convective parameters characterizing two types of convection were obtained, respectively, which were used to establish joint probability forecasting together with their corresponding thresholds. Using the ECMWF ensemble forecast and observations from April to September during 2016-2017, systematic verification mainly based on ROC and case study of different weather processes were conducted. The results demonstrate that joint probability method is capable of discriminating little rainfall convection and non-convection with comparable performance for different lead times, which is more favorable to identifying the occurrence of strong rainfall convection. The joint probability of little rainfall convection is a good indication for the occurrence of regional or local convection, but may produce some false alarms. The joint probability of strong rainfall convection is good at indicating regional concentrated short-term heavy precipitation as well as local heavy rainfall. There are also individual missing reports in this method, and in practice, 10% can be roughly used as joint probability threshold to achieve relative high TS score. Overall, ensemble-based joint probability method can provide practical short-term probabilistic guidance for severe convective weather.  相似文献   

19.
In this study, the simulation of an extreme weather event like heavy rainfall over Mumbai (India) on July 26, 2005 has been attempted with different horizontal resolutions using the Advanced Research Weather Research Forecast model version 2.0.1 developed at the National Center for Atmospheric Research (NCAR), USA. The study uses the Betts–Miller–Janjic (BMJ) and the Grell–Devenyi ensemble (GDE) cumulus parameterization schemes in single and nested domain configurations. The model performance was evaluated by examining the different predicted parameters like upper and lower level circulations, moisture, temperature, and rainfall. The large-scale circulation features, moisture, and temperature were compared with the National Centers for Environmental Prediction analyses. The rainfall prediction was assessed quantitatively by comparing rainfall from the Tropical Rainfall Measuring Mission products and the observed station values reported in the Indian Daily Weather Reports from India Meteorological Department (IMD). The quantitative validation of the simulated rainfall was done by calculating the categorical skill scores like frequency bias, threat scores (TS), and equitable threat scores (ETS). It is found that in all simulations, both in single and nested domains, the GDE scheme has outperformed the BMJ scheme for the simulation of rainfall for this specific event.  相似文献   

20.
Localized deep cumulus convective clouds have a capability of giving enormous amount of rainfall over a limited horizontal area, within a short span of time. Such types of extreme rainfall events are most common over the high elevated areas of Northern India during the Southwest monsoon season which causes widespread damage to the property and lives. Therefore, it is necessary to predict such extreme events accurately to avoid damage associated with them. The numerical mesoscale model Weather Research and Forecasting has been used to simulate the cloud burst event of Leh on August 05, 2010, so as to capture the main characteristics of the various parameters associated with this localized mesoscale phenomenon. The model has been integrated with four nested domains keeping Leh and its adjoining area as center. Two cloud microphysics parameterization schemes namely WSM3 and WSM6 have been used for the sensitivity experiments and results have been analyzed to examine the performance of both the schemes in capturing such extreme localized heavy rainfall events. Results show that the WSM6 microphysics was able to simulate the precipitation near to the observation. WSM3 microphysics simulated the location of the circulation near to the observation. In addition, the results also show that the maximum magnitudes of meridional and vertical wind as simulated with WSM3 microphysics are 12 and 4 m/s, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号