首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
In the mountain area of Southwestern China, there are large quantities of runoff-generated debris flows that are threatening the local people and facilities seriously. Gangou is a typical runoff-generated debris flow; its source is old deposit from floods and the debris flows downstream of the channel. On June 30, 2005, Gangou occurred debris flow, the debris flow destroying the road, the communications facilities and the farmland at the gully mouth. Unlike the formation mechanisms of other debris flows, the formation of 2005 debris flow in Gangou has its distinctive characteristics as follows. (1) The supply of the loose sources is intensive and distribute near the mouth of the gully; it is rare to see any debris flow initiate at such a lower location. (2) The debris flow finishes its initiation, flow and deposition around the 700-m-long channel, accompanied with the blocking process in the gully when the debris flow ran out; however, 10 min later, it releases and amplifies the peak flow about three times. (3) The topographic condition of the basin does not contribute much to the formation of the 2005 debris flow; instead, its formation is the result of the co-effort of continuous rainfall and a short-time heavy rainfall. In other words, the previous cumulative precipitation enables the moisture content of the soil on the right bank of the gully to reach saturation; then the soil slides into the channel under the action of the heavy rainfall at a later time. Meanwhile, the heavy rainfall accelerates the formation of gully run-off and initiates the loose mass in the channel from slide, thus forming the debris flow.  相似文献   

2.
岷县簸箕沟金矿因人类开采活动引发了矿山泥石流灾害.采用FLO-2D软件模拟分析了降雨强度重现期50 a及100 a条件下的簸箕沟泥石流运动特征,进行危险性评价和分区,并结合实际发生情况做了精度验证.结果表明:簸箕沟泥石流的堆积扇范围、堆积深度以及平均流速等运动特征参数随着降雨重现周期的变长而增大,堆积扇中部的堆积深度及流速明显大于两翼及前端.泥石流的危险区集中分布于泥石流沟道以及沟口一定范围内.随着降雨重现周期的变长,高危险区面积比例由48%升高至54.0%.通过精度验证得出模拟结果与实际情况基本相符,可信度较高.  相似文献   

3.
Mitigation works are very essential for mitigation of debris-flow hazards in mountainous areas. Usually, it is difficult to assess the effectiveness of existing mitigation works in a catchment. This paper presented a method for quantitative assessment of debris flow mitigation measures by using Kanako system, a user-friendly GUI-equipped debris flow simulator that allows good visualization and easy interpretation. Kanako 2D (Ver. 2.04) was applied to a case study at Caijia Gully, Sichuan Province, China. Mitigation works including check dams, drainage channel, and deposition basin were constructed in the gully in 2001 and 2006. Kanako 2D can simulate debris flow from steep area to alluvial fan. 1D simulation was applied for assessing the effect of the check dams at the lower part of the gully, and 2D simulation was applied for the effect of the drainage channel and deposition basin on the alluvial fan. The simulation results indicate that debris flow will cause great damage to residential area on the alluvial fan if mitigation measures were not implemented in the gully. For old dams which have been filled up with deposits of previous debris flows, the results show that they still have the function for controlling debris flow due to the gradient reduction of the channel bed in front of the dams by the trapped debris flow deposition. After the comprehensive control of debris flow including trapping, drainage, and deposition in the gully, the simulation results indicate that the risk on the alluvial fan can be reduced to an acceptable level.  相似文献   

4.
胡卸文  刁仁辉  梁敬轩  罗刚  魏来 《岩土力学》2016,37(6):1689-1696
拟建猴子岩水电站移民安置点位于江口沟泥石流堆积扇上,通过现场调查泥石流形成条件和运动特征,获得了1958年发生的50 a一遇泥石流危险区范围,根据雨洪法计算确定了泥石流的相关运动学参数。使用基于有限体积法的CFX软件,选择Bingham流变模型对江口沟泥石流流动过程的液面分布情况和速度场进行了三维数值模拟,得出了泥石流危险区范围和速度场分布情况。模拟结果显示,江口沟50 a一遇泥石流流过堆积区的平均速度为5.76 m/s,其中最大速度为13.59 m/s。数值模拟计算得出的危险范围较1958年扩大,是因为早期泥石流堆积物将原有地面特别是沟道附近地面抬高,使得现状条件下泥石流更容易向两侧漫流泛滥而扩大。上述结果为泥石流防治工程设计及危险区范围划定提供了一种新的方法,对工程实践具有重要的指导意义。  相似文献   

5.
This paper uses the catastrophic rockslide at Sanxicun village in Dujianyan city as an example to investigate the formation mechanism of a rapid and long run-out rockslide-debris flow of fractured/cracked slope, under the application of a rare heavy rainfall in July 2013. The slope site could be affected by the Wenchuan Ms 8.0 Earthquake in 2008. The sliding involved the thick fractured and layered rockmass with a gentle dip plane at Sanxicun. It had the following formation process: (1) toppling due to shear failure at a high-level position, (2) shoveling the accumulative layer below, (3) forming of debris flow of the highly weathered bottom rockmass, and (4) flooding downward along valley. The debris flow destroyed 11 houses and killed 166 people. The run-out distance was about 1200 m, and the accumulative volume was 1.9?×?106 m3. The rockslide can be divided into sliding source, shear-shoveling, and flow accumulative regions. The stability of this fractured rock slope and the sliding processes are discussed at four stages of cracking, creeping, separating, and residual accumulating, under the applications of hydrostatic pressure and uplift pressure. This research also investigates the safety factors under different situations. The double rheological model (F-V model) of the DAN-W software is utilized to simulate the kinematic and dynamic processes of the shear-shoveling region and debris flow. After the shear failure occurred at a high-level position of rock, the rockslide moved for approximately 47 s downward along the valley with a maximum velocity of 35 m/s. This is a typical rapid and long run-out rockslide. Finally, this paper concludes that the identification of the potential geological hazards at the Wenchuan mountain area is crucial to prevent catastrophic rockslide triggered by heavy rainfall. The identified geological hazards should be properly considered in the town planning of the reconstruction works.  相似文献   

6.
The Central-West region of Argentina was seriously affected by a series of convective summer storms on January–February of 2013 generating many debris flows and rockfall in the Central Andes mountain regions. In particular, the unreported 8th February event caused the sad death of a 10-year-old child being completely ignored by society and local authorities. Despite this, meteorological conditions associated with this event and further episodes were rarely measured and determined mainly due to scarce meteorological stations in Andean mountain areas. In this paper, meteorological data from CMORPH algorithm and measurements of surrounding gauges were analyzed for estimating the triggering precipitation value of this event. As well, the particular debris flow channeled into the main branch of the Amarilla gully in the Agua Negra valley was geomorphologically described. The amount of precipitation associated with this debris flow was 5.5 and 13.2 mm accumulated previous to the event. This violent debris flow was generated in a talus zone in a periglacial environment located just below a covered rock glacier. However, the influence of the permafrost thawing in this process is not feasible. The altitude of the 0 °C isotherm was lower during the previous days of the event, and no monitoring on permafrost is available for this area. The volume of removed mass was estimated in 5 × 104 m3, and the mean velocity was 35 km/h. Boulders of 4 m diameter were found in the source area, while the deposit is up to 75% sandy with clasts that hardly exceed 10 cm in the alluvial fan distal part. Herein the main objective is to advice about the probable catastrophic impact of similar events in the future. These findings could be useful for hazard remediation, mitigation, and prevention plans for the Agua Negra international pass under construction.  相似文献   

7.
The debris flow formation conditions changed after the Wenchuan earthquake. For studying the optimal characteristics of the drainage canal under the changed formation conditions, the Zhangjia gully in Beichuan County, a typical debris flow gully, was selected as the study area. Two debris flow events occurred on September 24, 2008 and July 17, 2009, respectively, which threatened the safety of the inhabitants and destroyed the properties and transportation routes on the alluvial fan. Huge amounts of solid loose materials triggered by the earthquake and the effective antecedent precipitation were responsible for the debris flow occurrence. For eliminating the damage caused by debris flows, the construction of a drainage canal on the alluvial fan became necessary. A design method for the optimal cross-section characteristics of a debris flow drainage canal is discussed in this paper. Using the standard measurements for the depth (h) and the width (b), the cross-section size parameter (F) and the cross-section configuration parameter (M) under optimal hydraulic conditions are defined and deduced. Subsequently, formulas for calculating the cross-section measurements are deduced under optimal hydraulic conditions when peak discharge (Q), grain composition (D 50 and D 10), and longitudinal slope (I) are known. Finally, this method is applied for the cross-section design of the debris flow drainage canal in Zhangjia gully.  相似文献   

8.
The groundwater flow system and the flow velocity in the alluvial fan plain of the Hutuo River, China, have been studied, with an emphasis on relating geochemical characteristics and isotopes factors. Seven stretches of one river, six springs and 31 wells, with depths ranging from 0 m (river waters) to 150 m, were surveyed. The groundwater has a vertical two-layer structure with a boundary at about 80–100 m depth, yielding an upper and a lower groundwater layer. The δ18O and δD values range from ?10.56 to ?7.05‰ and ?81.83 to ?59‰, respectively. The groundwater has been recharged by precipitation, and has not been subjected to significant evaporation during infiltration into the aquifer in the upper layer. Using a tritium model, the groundwater flow in the alluvial fan plain showed horizontal flow velocity to be greater than vertical velocity. Groundwater in the upper layer is characterized by Ca–HCO3 type. From the spatial distribution characteristics of the stable isotope and chemical composition of the groundwater, agricultural irrigation was considered to have an influence on the aquifer by causing excessive groundwater abstraction and irrigation return.  相似文献   

9.
A rock avalanche is a geological event that is always sudden, rapid and with a long run-out, and can result in large loss of lives and property. The Wenjiagou rock avalanche was a high-speed rock landslide caused by a strong earthquake, in Mianzhu, Sichuan Province, southwest China. In this study, we reproduce the movement and deposition processes of the sliding mass by numerical simulation. We analyze the effects of the friction coefficient of each slip surface and the strength of the parallel bonds and contact stiffness between particles on the dynamic process and deposit features using three-dimensional particle flow code (PFC3D). The simulation results agree with the field measurements when the friction coefficient is 0.2, parallel bond strength is 2 MPa, and contact stiffness is 2?×?108 kN/m. The landslide lasted about 115 s from the initial movement to the final deposition at the exit of the valley. The maximum velocity of the sliding mass was 114 m/s.  相似文献   

10.
我国公路泥石流病害严重,泥石流淤埋公路构建筑物是一类常见的公路泥石流病害类型。泥石流衰减动力学是防治泥石流淤埋病害的重要关键技术,也是泥石流运动学、动力学研究的核心问题之一。本文作者运用泥沙运动力学及流体力学原理,初步建立了泥石流固相颗粒和液相浆体的能量衰减条件,把泥石流衰减模式概化为两类,即能量抑制衰减和能量自由衰减;通过泥石流沉积模型试验,得到了不同粘度泥石流体的沉积扇变化形态,随着泥石流体粘度的增大,沉积扇边缘变陡、扩展范围变小、纵轴线长度减小等结论与实际情况吻合;初步建立了泥石流能量衰减速率计算方法。研究成果为防治公路泥石流病害奠定了基础。  相似文献   

11.
Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan   总被引:2,自引:2,他引:0  
This study focused on the landslide case at Su-Hua Highway 115.9k, Taiwan. A preliminary investigation was conducted on geomorphologic features change and landslide mechanisms using digital elevation models, geographical maps, and remote sensing images at different times in conjunction with geological surveys and analysis results. Using the results of geological surveys and physical model experiments, we constructed a discrete element method to simulate the process of landslide movement. The results revealed deformation in the metamorphic rock slopes upstream of 115.9k. The slopes around the erosion gully upstream presented visible slope toes cutting and tension cracks at the crest as well as unstable rock masses. According to the results of numerical simulation for typhoon Megi event, intense rains could induce slippage in the rock debris/masses in the source area, initially at a speed of 5–20 m/s. Subsequently, steeper terrain could cause the rock debris/masses to accelerate to form a high-speed (>30 m/s) debris slide quickly moving downstream to form an alluvial fan downstream by the sea.  相似文献   

12.
文中通过模型试验,对试验现象中泥石流启动模式和堆积特征进行观测,研究了贺兰山苏峪口泥石流的形成受沟床坡度、土体含水率、粗颗粒含量三个因素影响的状况,初步探讨了贺兰山东麓泥石流在三个因素影响下的变化情况,试验结果表明:三个因素对泥石流影响由大到小分别是粗颗粒含量,沟床坡度、土体含水率;且粗颗粒含量越低、沟床坡度越大、含水率越高越容易发育泥石流。细颗粒含量较高时,泥石流的类型为沟道侵蚀型,粗颗粒含量较高时,泥石流类型为堵溃型。  相似文献   

13.
浙东南山丘区泥石流爆发的临界雨量分析   总被引:2,自引:0,他引:2  
首先对浙东南山区泥石流的形成条件(物源、地形和降水条件)进行了研究。随后研究了本区泥石流的基本特征:在形成方式上,以谷坡或沟源地带的土动力启动方式为主;在侵蚀特征方面,主要有面蚀作用和沟谷侵蚀作用;堆积特征方面,在宏观上当规模较大时可形成堆积扇,规模较小时往往以停积于中下游沟道为主;微观上,主要表现为堆积物质结构杂乱,个别具有期次性。对本区泥石流临界雨量组合进行分析,认为采用基于区域临界雨量组合的泥石流预警预报方法较为合理。利用研究区内4次群发泥石流时的降雨特征值确定了本区泥石流爆发的临界雨量组合,并将其应用于研究区泥石流的临灾预警,分为以下步骤:①收集实时降雨资料;②绘制实时雨量组合曲线;③泥石流灾害预警;④泥石流临界雨量基准的修正。  相似文献   

14.
A series experiments are conducted to investigate the effects of streambed profile on the erosion and deposition of debris flows. It is found that straight channel can increase the run out of debris flows by 10–25%, compared to that of surfaces without channels, and that travel distance was positively correlated with the hydraulic radius of the channel. In addition, the presence of straight channels caused the volume of debris flow deposition to become normally distributed with respect to travel distance. In the case of curved channels, increases in the sinuosity index resulted in significant blockage and obstruction. In the deposition zone, the maximum deposition volume for a channel with a comparatively low sinuosity index (1.05) was <?50% of the minimum deposition volume for a straight channel. Furthermore, the channel curvature affected not only the positions of deposition peaks along the travel distance but also the debris flow magnitudes in each unit interval (0.5 m). This study demonstrates the effects of differences in channel morphology on the erosional and depositional processes of gully debris flows. These findings are of significant importance for guiding debris flow risk assessment and for the restoration and reconstruction of downstream regions.  相似文献   

15.
An extremely large rock avalanche occurred on April 9, 2000 at Yigong, Tibet, China. It started with an initial volume of material of 90?×?106 m3 comprising mainly of loose material lying on the channel bed. The rock avalanche travelled around 10 km in horizontal distance and formed a 2.5-km-long by 2.5-km-wide depositional fan with a final volume of approximately 300?×?106 m3. An energy-based debris flow runout model is used to simulate the movement process with a new entrainment model. The entrainment model considers both rolling and sliding motions in calculating the volume of eroded material. Entrainment calculation is governed by a second order partial differential equation which is solved using the finite difference method. During entrainment, it is considered that the total mass is changed due to basal erosion. Also the profile of the channel bed is adjusted accordingly due to erosion at the end of each calculation time step. For Yigong, the profile used in the simulation was extracted from a digital elevation model (DEM) with a resolution of 30 m?×?30 m. Measurements obtained from site investigation, including deposition depth and flow height at specific location, are used to verify the model. Ground elevation-based DEM before and after the event is also used to verify the simulation results where access was difficult. It is found that the calculated runout distance and the modified deposition height agree with the field observations. Moreover, the back-calculated flow characteristics based on field observations, such as flow velocity, are also used for model verifications. The results indicate that the new entrainment model is able to capture the entrainment volume and depth, runout distance, and deposition height for this case.  相似文献   

16.
2011年6月5日至6月6日,贵州望谟县发生连续强降雨,引发境内纳包沟泥石流灾害,给当地居民的生命和财产造成巨大损失。本研究着重分析了纳包沟泥石流的物源、地形和降雨因素,指出该地区降雨强度大,流域内30°~40°坡度范围比例最大,最有利于浅层滑坡的发育,滑坡进而为泥石流的暴发提供主要物源;进一步得出泥石流的特征和动力学参数,泥石流为稀性泥石流,最大洪峰流量25 m3/s,泥石流一次冲出固体总量约6 100 m3。该次泥石流的形成机理为浅层滑坡引起的滑坡型泥石流。针对纳包沟的特点,当地政府和居民都应高度重视并实施相应的生物和工程措施以预防泥石流的发生。  相似文献   

17.
西藏林芝市波密县天摩沟于2007年9月、2010年7月、2010年9月和2018年7月分别发生大型和巨型泥石流,4次泥石流活动均不同程度堵塞主河帕隆藏布,淤埋国道318或摧毁桥梁,堰塞湖淹没村道、溃决造成下游塌岸,给当地居民生命财产尤其是交通干道造成极大危害。文章针对以上4次泥石流活动,采用高分辨率遥感影像,对泥石流发生前的孕灾背景进行解译,同时结合无人机航空摄影和地面调查对天摩沟泥石流形成机制和成灾特征进行了对比分析,得到以下结论:(1)天摩沟内冰川发育,年际变化大,目前泥石流形成的主要方式为岩崩和堵溃,其中2018年和2007年为岩崩引发,2010年为堵溃引发,该沟同时具有冰川泥石流和降雨泥石流的特征。(2)经历了2007年和2010年3次大规模泥石流后,天摩沟内斜坡类物源储量增加了19.6%,绝大部分启动的冰碛物和崩滑物源都转化为泥石流沟道堆积物或冲出沟口。(3)天摩沟2018年泥石流容重为2.10g/cm^3,为黏性泥石流,流速快冲击力强,帕隆藏布河道受到挤压多次变道,历史上最大偏移距离为190m。(4)2018年7月11日泥石流成因为降雨条件下加剧冰川消融引发主沟沟源右侧岩崩,形成多阵次泥石流,主泥石流体积18×104m3,淤埋G318近220m。后续依然具有暴发大型泥石流的可能性,建议进行防治降低其危害程度。  相似文献   

18.
Shen  Wei  Berti  Matteo  Li  Tonglu  Benini  Andrea  Qiao  Zhitian 《Landslides》2022,19(4):885-900
Landslides - Rockslide-debris flow may cause catastrophic damages because of its high speed and long run-out distance. The influences of slope gradient and gully channel on the entrainment,...  相似文献   

19.
Debris flows occurring in well-vegetated alpine areas usually contain a range of sizes of woody debris. Large woody debris (LWD), which has a retaining effect on further transportation of debris downstream, is mainly distributed in upstream reaches, and the amount of small woody debris (SWD) deriving from LWD increases dramatically midstream and downstream. The Dongyuege (DYG) bouldery debris flow with a sandy-matrix took place in a wildwood area, causing 96 deaths and its clay-sized fraction does not contain typical clay minerals. However, its total travel distance and runout distance in a low-gradient reach (between 2° and 5°) upstream of the depositional fan apex reached 11 km and 3.3 km, respectively. The abundant SWD in the DYG debris flow might have played a crucial role in slurrying, persistence, and the long runout over the low gradient. To understand why this debris flow extended so far, slurrying experiments, pore water escape experiments, and excess pore pressure experiments were performed. Crude debris (CD) collected from the DYG debris flow deposit was used throughout the experiments, the tested materials of which are separated into CD-containing SWD with a maximum grain size (MGS?=?2 mm), purified debris (PD) without SWD with a MGS of 2 mm, and SWD <?2 mm in diameter. In the five slurrying experiments with PD-SWD-water mixtures, as the SWD content was elevated from 0.0 to 2.0 wt%, the current velocity of escaping pore water decreased uniformly from 17.2 to 0.9 mm/s. When the SWD content was 1.0 wt% or greater, the mixtures can be considered as one-phase flows of viscous fluids. The six pairs of pore water escape experiments based on the slurries remolded with CD and PD, respectively showed that the time needed for pore water to escape from the CD slurries was much greater than those from their PD counterparts. Also, measured was the dissipation rate of the relative excess pore pressure of CD and PD slurries of various densities and volumes, which showed that most of the rates of the PD-slurries were always greater than CD-slurries. Overall, the results show that SWD has a strong influence on the slurrying of the DYG debris without typical clay minerals found in other debris flows, and SWD helps to sustain the high excess pore pressure in the interior of the debris flow mass which resulted in the extended travel distance over such a low gradient. SWD favors the formation and stability of one-phase water-debris mixtures because of its large specific surface area and low density, which makes it able to absorb fine particles and able to be suspended in slurry flows over long timescales. In well-vegetated mountainous areas, SWD should be taken into account in the assessment of debris-flow hazards.  相似文献   

20.
藏东南部泥石流堵河试验研究   总被引:4,自引:0,他引:4  
通过模型试验对泥石流入汇主河后堵塞坝形成过程以及堵塞坝体溃决后主河河床形态特征进行了研究。实验历时3个月,共13组试验。在支主沟交汇角为90°的情况下,通过改变支沟泥石流容重、支主沟的流量比和动量比,建立了泥石流堵河的判别公式,当r>1 001.16时容易发生堵河现象,并对培龙沟两次泥石流堵河事件进行了判定;定义了主河的束窄率S与主河流速变异系数Fv,并发现了主河的束窄率与支主沟动量比之间存在线性关系;主河稳定后的平均宽度与流速变异系数之间存在幂的关系。该实验能够较好地模拟泥石流堵塞坝形成的过程,结果比较合理,并为泥石流灾害的防治提供了相应的理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号