首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Petrophysical evaluation and rock physics analysis are the important tools to relate the reservoir properties like porosity, permeability, pore fluids with seismic parameters. Nevertheless, the uncertainties always exist in the quantification of elastic and seismic parameters estimated through wireline logs and rock physics analysis. A workflow based on statistical relationships of rock physics and logs derived elastic and seismic parameters with porosity and the percentage error exist between them is given. The statistical linear regressions are developed for early Eocene Chorgali Formation between various petrophysically factors determined from borehole logging of well Ratana–03 drilled in tectonically disturbed zone and the seismic and elastic parameters estimated through rock physics modeling. The rock physics constraints such as seismic velocities, effective density and elastic moduli calculated from Gassmann fluid substation analysis are in harmony and close agreement to those estimated from borehole logs. The percentage errors between well logs and rock physics computed saturated bulk modulus (K sat ), effective density (ρ eff ), compressional and shear wave velocities (V P and V S) are 1.31%, 4.23 %, 5.25% and 4.01% respectively. The permeability of reservoir intervals show fairly strong linear relationship with the porosity, indicating that the reservoir interval of the Chorgali Formation is permeable and porous thus having large potential of hydrocarbon accumulation and production.  相似文献   

2.
The recent development of the coalbed methane (CBM) industry has a significant role in advancing hydraulic fracturing theory and technology. However, further development requires a better understanding of how fractures influence reservoir permeability. In situ stress data from 54 CBM wells in the southern Qinshui Basin, China, were obtained by the injection/falloff test method to analyse the effect of in situ stress on the permeability of the CBM reservoir. The types of in situ stress states were classified, and the coal reservoir permeability under different in situ stress states was analysed. The results indicate that the maximum horizontal principal stress (σH), minimum horizontal principal stress (σh) and vertical principal stress (σv) all have positive linear relationships with the coal seam burial depth. Three in situ stress states were observed from the shallow to deep regions of the CBM reservoir in the study area: σH?>?σh?>?σv, σH?>?σv?>?σh and σv?>?σH?>?σh, which account for 9, 76 and 15% of the test wells, respectively. Coal reservoir permeability decreases with increasing horizontal principal stress, whereas it first decreases with increasing σv, then increases and finally decreases. The variation in permeability with σv is due to the conversion of the in situ stress states. Coal reservoir permeability has obvious differences under different in situ stress states. The permeability is the largest when σv?>?σH?>?σh, followed by σH?>?σh?>?σv and smallest when σH?>?σv?>?σh. The permeability differences are caused by the fracture propagation shape of the rock strata under different in situ stress states.  相似文献   

3.
Permeability variation in reservoir rocks results from the combined effects of various factors, and makes porosity–permeability (?k) relationships more complex, or, in some cases, non-existent. In this work, the ?k relationship of macroscopically homogeneous glass-bead packs is deduced based on magnetic resonance imaging (MRI) measurement and Kozeny-Carman (K-C) model analysis; these are used as a frame of reference to study permeability of reservoir rocks. The results indicate: (1) most of the commonly used simplified K-C models (e.g. the simplified traditional (omitting specific surface area), high-order, threshold, and fractal models) are suitable for estimating permeability of glass-bead packs. The simplified traditional model does not present obvious dependence on rock samples. Whether for the glass-bead packs or clean natural sandstones, the sample coefficients almost remain invariant. Comparably, the high-order, the fractal, and the threshold models are strongly sample-specific and cannot be extrapolated from the glass-bead packs to natural sandstones; (2) the ?k relationships of quartz sands and silty sandstones resemble those of the glass-bead packs, but they significantly deviate from the K-C models at low porosities due to small pore entry radius; (3) a small amount of intergranular cements (<10%v) does not affect the general variation trend of permeability with porosity but can potentially increase predictive errors of the K-C models, whereas in the case of more cements, the ?k relationships of sandstones become uncertain and cannot be described by any of these K-C models.  相似文献   

4.
Extraction of useful geochemical, petrologic and structural information from deformed fluid inclusions is still a challenge in rocks displaying moderate plastic strain. In order to better understand the inclusion modifications induced by deviatoric stresses, six deformation experiments were performed with a Griggs piston-cylinder apparatus. Natural NaCl–H2O inclusions in an oriented quartz crystal were subjected to differential stresses of 250–470 MPa at 700–900 °C and at 700–1,000 MPa confining pressure. Independently of the strain rate and of the crystallographic orientation of the quartz, the inclusions became dismembered and flattened within a crystallographic cleavage plane subperpendicular to σ 1. The neonate (newly formed) inclusions that result from dismemberment have densities that tend towards equilibrium with P fluid = σ 1 at T shearing. These results permit ambiguities in earlier deformation experiments on CO2–H2O–NaCl to be resolved. The results of the two studies converge, indicating that density changes in neonate inclusions are promoted by high differential stresses, long periods at high P and high T, and fluid compositions that maximize quartz solubility. Neonates spawned from large precursor inclusions show greater changes in density that those spawned from small precursors. These findings support the proposal that deformed fluid inclusions can serve as monitors of both the orientation and magnitude of deviatoric stresses during low-strain, ductile deformation of quartz-bearing rocks.  相似文献   

5.
Pile reinforcement mechanism of soil slopes   总被引:1,自引:1,他引:0  
Stabilizing piles are widely used as an effective and economic reinforcement approach for slopes. Reasonable designs of pile reinforcement depend on the understanding of reinforcement mechanism of slopes. A series of centrifuge model tests were conducted on the pile-reinforced slopes and corresponding unreinforced slopes under self-weight and vertical loading conditions. The deformation of the slope was measured using image-based analysis and employed to investigate the pile reinforcement mechanism. The test results showed that the piles significantly reduced the deformation and changed the deformation distribution of the slope, and prevented the failure occurred in the unreinforced slope. The pile influence zone was determined according to the inflection points on the distribution curves of horizontal displacement, which comprehensively described the features of the pile–slope interaction and the characteristics of reinforced slopes. The concepts of anti-shear effect and compression effect were proposed to quantitatively describe the restriction features of the piles on the deformation of the slope, namely the reduction in the shear deformation and the increase in the compression deformation, respectively. The pile reinforcement effect mainly occurred in the pile influence zone and decreased with increasing distance from the piles. There was a dominated compression effect in the vicinities of the piles. The compression effect developed upwards in the slope with a transmission to the anti-shear effect. The anti-shear effect became significantly dominated near the slip surface and prevented the failure that occurred in the unreinforced slope.  相似文献   

6.
A number of studies have shown that development areas of weak deformation brittle series of tectonically deformed coal are often the favorable areas for coalbed methane development, and the distribution area of the mylonitic coal of ductile deformation is a danger zone of mine gas outburst. Therefore, faced with solving the key scientific issues and technical problems of the coal bed methane exploration and development and gas outburst prediction and evaluation, more and more attention has been paid to the research on tectonically deformed coal. This paper first systematically elaborated the main research progress on the concept and classification of tectonically deformed coals, their deformation characteristics, and the pore fissure structure and chemical structure. Then, it pointed out that there was a lack of research on the ductile deformation mechanism of coal, and this key scientific problem needs further research in the future. It seemed that the structural and geochemical process of chemical elements migration and accumulation during coal deformation was a new field which is worth exploring. Through refining stress sensitive elements, their distribution and evolution patterns in different stress-strain environments and different types of tectonically deformed coals might be revealed, and then they could become a predictive index which indicates the significance of distribution of tectonically deformed coals and gas outburst prediction. It was thought that geophysical response characteristics and research of detection theory and interpretation method of different types of tectonically deformed coal and gas enrichment area should be an important development direction in the future.  相似文献   

7.
To investigate inhomogeneous and porous structures in nature, the concept of fractal dimension was established. This paper briefly introduces the definition and measurement methods of fractal dimension. Three different methods including mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR), and nitrogen adsorption (BET) were applied to determine the fractal dimensions of the pore space of eight carbonate rock samples taken from West Tushka area, Egypt. In the case of fractal behavior, the capillary pressure P c and cumulative fraction V c resulting from MICP are linearly related with a slope of D-3 in a double logarithmic plot with D being the value of fractal dimension. For NMR, the cumulative intensity fraction V c and relaxation time T 2 show a linear relation with a slope of 3-D in a double logarithmic plot. Fractal dimension can also be determined by the specific surface area S por derived from nitrogen adsorption measurements and the effective hydraulic radius. The fractal dimension D shows a linear relation with the logarithm of S por . The fractal dimension is also used in models of permeability prediction. To consider a more comprehensive data set, another 34 carbonate samples taken from the same study area were integrated in the discussion on BET method and permeability prediction. Most of the 42 rock samples show a good agreement between measured permeability and predicted permeability if the mean surface fractal dimension for each facies is used.  相似文献   

8.
The aquifuge stability is the key to study the impacts of coal mining on the aquifer. Based on the geological conditions of a mine in Yili of Xinjiang, China, this paper has studied the stability evolution laws of clay aquifuge during extremely thick coal seam mining by similar material simulation experiment in the laboratory. For the water-swelling and expansion property of clay aquifuge, the reasonable proportion of the similar material is firstly determined by taking the uniaxial compressive strength and the permeability coefficient as core indexes. Then, the overlying strata movement coupled solid–liquid physical model is established. In addition, the aquifuge deformation, the water level changes of the aquifer, and the height of fracture zone in overburden are analyzed during the slice mining. The research results indicate that the clay aquifuge will gradually occur instability failure during the mining of the working face, and the aquifuge stability has the threshold effects. When the ratio of the vertical displacement of the aquifuge to the thickness is Dv/T?≤?58.0%, the ratio of the horizontal displacement to the thickness is Dh/T?≤?17.0%, and the height of fractured zone in overburden is below the aquifuge, the mining-induced fractures may be closed and the aquifuge stability could be maintained. If Dv/T?≥?75.0%, Dh/T?≥?23.9%, and the height of fractured zone in overburden is within the aquifuge, the fractures will develop and connect the aquifuge and the stability failure of the aquifuge will occur, which has a direct correlation with the mining height.  相似文献   

9.
The results are presented of the first studies to be carried out on 4He retention under mechanical deformation of isoferroplatinum (Pt3Fe) from a unique placer deposit at the Konder and Uorgalan rivers and from indigenous shows of the alkaline–ultrabasic Konder Massif (Khabarovsk krai, Russia). It was found that the deformation of Pt3Fe of the Pm-3m cell resulted in structural transformations with the appearance of domains and subsequent conversion into native platinum (Pt, Fe) of the Fm-3m cell.  相似文献   

10.
The purpose of the investigation is to reveal the dependences of P p = f(C p) on reservoir conditions and the lithological composition of rocks. The samples were studied using a set of lithological-petrographic investigations. To obtain the dependences on thermobaric conditions, 90 samples of different porosities (C p) of 15, 20, and 25% were collected. As a result, the general pattern of the change in the rock resistivity during the transition from atmospheric conditions of measuring to reservoir conditions was established. Dependences of porosity parameter P p on porosity coefficient C p were obtained for three values of formation water salinity and three reservoir conditions. The measurement errors of the porosity parameter P p were calculated using dependences obtained under atmospheric conditions.  相似文献   

11.
Channel sand acts as a stratigraphic trap for hydrocarbon accumulation in many parts of the world. Delineation of this type of reservoir is crucial as channel sand may be scarce, and inaccurate location of the drilling wells could lose a huge currency. The Hassi Messaoud (HMD) field was subjected to multiphase tectonic events, where deep-seated structures were rejuvenated leading to intensive fault complexity. The main effective tectonic events upon the studied area are the Hercynian compression and deep erosion till the Ordovician Hamra Quartzite (HQZ) oil reservoir, followed by active Triassic rifting and filling the deeply eroded areas or the graben areas by eruptive volcanic rocks at Triassic time. Hercynian erosion and volcanic rocks distribution introduce a big uncertainty to the reservoir structural model. Amplitude versus offset (AVO) method is used as a helpful tool to differentiate channel sand from surrounding formations. Several attributes (P-impedance, S-impedance, longitudinal velocity Vp, shear velocity Vs and density ρ) are estimated from pre-stack seismic inversion. They have different sensitivity to the reservoir properties. Derived attributes such as Lamé parameters, incompressibility × density (λρ) and rigidity × density (μρ) can provide key lithology and fluid indicators (Goodway et al. 1997, Goodway CSEG Rec 26(6):39-60 2001). Petrophysically relating AVO attributes both to λρ and μρ and to each other in Lambda–Mu–Rho (LMR) cross-plot space can be a good tool for AVO interpretation (Rutherford and Williams Geophysics 54:680–688 1989 and Castagna and Swan Lead Edge 16(4):337–342 1997). After proper data conditioning, simultaneous inversion of pre-stack angle gathers is performed to get acoustic wave impedance (P-impedance), elastic wave impedances (S-impedance) and density ρ, then to calculate λρ and μρ volumes. In the studied area, λρ and μρ are used as a very important key to separate reservoir sands. The λρ and μρ curves are generated at each well location. Cross plots showed a fair separation of sand in the formation, i.e. higher μρ and lower λρ can detect sand. The output λρ and μρ volumes after simultaneous inversion follow the distribution of the sand which is consistent with the wells penetrating the target reservoir. This finding on the extension of the sand reservoir in terms of λρ and μρ. 3D cross-plot zonations are used for lithology discrimination. In this study, well logs were used to constrain lithology and to control the zonation filters by reducing the limits ambiguity. Other types of advanced attributes are calculated and tested. The obtained (μρλρ) volume acts as a good indicator for the sand distribution. It was finally used as sand presence index in the area. Also μρ has shown a good linear relationship with porosity. To note that the porosity volume is created based on the linear relationship with μρ. A product of derived porosity and the sand presence index (μρλρ) provides a good tool for reservoir characterization and lead to reservoir management, future planning of the field, and setting location for new wells.  相似文献   

12.
Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars in X-ray binary systems are calculated assuming LTE. The variations in the profile shapes and radial-velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary system. The dependence of the shape of the radial-velocity curve on the orbital inclination i increases with decreasing component-mass ratio q = m x /m v . The integrated line profiles and radial-velocity curves of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital inclination and mass of the relativistic object: i < 43° andm x = 8.2–12.8 M. These estimates are in good agreement with earlier results of fitting the radial-velocity curve of Cyg X-1 using a simpler model (i < 45°, m x = 9.0–13.2 M).  相似文献   

13.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   

14.
It is difficult to protect structures and foundation from collapse after an earthquake hit; however studies have been undertaken in order to limit future earthquake hazards. Therefore, the main notion of the present paper is to study an alternative technique to control the foundation structure deformation under seismic loading using in-filled trench with expanded polystyrene (EPS) geofoam. A series of plane strain two-dimension module for a 10-story building and subjected to different earthquakes are run using Plaxis 2D. The numerical analysis is primary concerned with studying the effect of using wave barrier of EPS geofoam adjacent to structure on improving the structure stability as a passive screening technique. The wave barrier geometry, sand density and earthquake acceleration are investigated. The results showed the effectiveness of such trench in controlling the lateral deformation and decreasing the angular distortion, β, of a structure. To get the positive effect of such barrier, it should be installed in dense sand with optimum geometry of b?=?0.25d and d?=?0.5B. The installation of wave barrier—with sufficient depth and width adjacent to structure—can significantly reduce the amplitude reduction ratio to as much as 10%. It is also found that the angular distortion, β, of the foundation is changed from 0.04 to 0.0018 due to barrier effect. The adopted technique can modify the building damage from severe to moderate and slight damage with lesser deformation.  相似文献   

15.
In order to study the influence of confining pressure and water content on the mechanical properties, fracture evolution and energy damage mechanism of deep-buried carbonaceous slate, uniaxial and triaxial compression tests were carried out under natural and saturated states and acoustic emission monitored. The deep-buried carbonaceous slate samples were obtained at a depth of 1020 m from the Lanjiayan tunnel in Sichuan province, China, where the maximum in situ stress has been measured at 44.2 MPa. The results suggest that water has a significant softening effect on the strength and deformation characteristics of carbonaceous slate, but the effect decreases with an increase in the confining pressure. When both the confining pressure and water content are increased, the acoustic emission events and dissipated energy gradually increase at the pre-peak and post-peak stages. Thus, the AE evolution type seen in the natural state under low confining pressure usually presents as a main shock-type event, and it changes to a foreshockmain shockafter shock event when saturated and at high confining pressures. Based on the S-shaped energy evolution law, the damage evolution process of carbonaceous slate was analyzed. The damage stress thresholds σ ea and σ eb were obtained, which can be considered as the thresholds of the rock entering the energy-hardening and energy-softening stages. Finally, a new brittleness energy index BDE is proposed to describe the influence of confining pressure and water content on the damage mechanism of deep-buried carbonaceous slate.  相似文献   

16.
The Jurassic successions represent a wide distribution in North of the Kerman province. These successions include Ab-Haji, Badamu, and Hojedk formations. The Hojedk Formation contains the plant fossils. The Lenjan section is one of the suitable areas for paleontological studies on the Hojedk Formation. The study section is mostly composed of green sandstone and shale with several interbedded coal veins with different thicknesses. The thickness of the Hojedk Formation is about 200 m in the Lenjan section. In this study, seven genera and 13 species of macro plant fossils were identified and described, including Nilssonia undulata, Nilssonia bozorga, Nilssonia berriesi, Nilssonia sp., Klukia cf. exilis, Klukia exilis, Cladophlebis antarctica, Coniopteris lobata, Coniopteris murrayana, Elatocladus confertus, Podozamites sp., Equisetites sp., and Coniopteris sp. The Bajocian–Bathonian can be attributed to the Lenjan section based on the recognized flora.  相似文献   

17.
Debris flow density determined by grain composition   总被引:1,自引:1,他引:0  
Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P(D) = KD exp(? D/Dc), with μ and Dc representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. Dc characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ = 1.26μ -0.132 + 0.049Dc0.443, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.  相似文献   

18.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

19.
Pyroxenes of general stoichiometry Mg(Ge x Si1?x )O3 were encountered in attempts to synthesise Ge-substituted talcs at 0.2 GPa, 650–700 °C. Orthopyroxenes (Pbca) of compositions x = 0.21, 0.30, and 0.34 were identified, and also a P21/c clinopyroxene of composition x = 0.63, and C2/c clinopyroxenes of compositions x = 0.91 and 1. End-member clinoenstatite MgSiO3-P21/c synthesised at 16 GPa, 1300 °C and transformed from C2/c was also included in the study. Crystal structure refinements using single-crystal XRD data showed that unit-cell parameters vary linearly with Si–Ge for the Pbca and P21/c pyroxenes, both of which have two symmetrically non-equivalent tetrahedral chains. Refinement of Si–Ge occupancies at tetrahedral sites showed that the two chains of all primitive pyroxenes have very different compositions, with XGe(TB) ? XGe(TA). This difference arises from the greater flexibility of the B-chain to rotate in response to tetrahedral expansion due to increasing Ge content. The TA-M2 shared polyhedral edge imposes significant constraints on the flexibility of the A-chain, which can accommodate much less Ge than the B-chain. Linear trends of cell parameters, site occupancies, and structural parameters for the primitive pyroxenes, when extrapolated to published data for MgGeO3Pbca, extend across the entire Si–Ge join.  相似文献   

20.
The influence of oxygen fugacity (fO2) and temperature on the valence and structural state of iron was experimentally studied in glasses quenched from natural aluminosilicate melts of granite and pantellerite compositions exposed to various T-fO2 conditions (1100–1420°C and 10?12–10?0.68 bar) at a total pressure of 1 atm. The quenched glasses were investigated by Mössbauer spectroscopy. It was shown that the effect of oxygen fugacity on the redox state of iron at 1320–1420°C can be described by the equation log(Fe3+/Fe2+) = k log(fO2) + q, where k and q are constants depending on melt composition and temperature. The Fe3+/Fe2+ ratio decreases with decreasing fO2 (T = const) and increasing temperature (fO2 = const). The structural state of Fe3+ depends on the degree of iron oxidation. With increasing Fe3+/Fe2+ ≥ 1, the dominant coordination of Fe3+ changes from octahedral to tetrahedral. Ferrous iron ions occur in octahedral (and/or five-coordinated) sites independent of Fe3+/Fe2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号