首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
医巫闾山变质核杂岩构造特征   总被引:44,自引:5,他引:44  
经过野外宏观观测、室内显微分析及同位素年龄测定,基本厘定医巫闾山是一个白垩纪时形成的变质核杂岩。变质核杂岩中心为晚燕山期的医巫闾山二长花岗岩体,周围是由代表地壳深部变形特点的太古宇变质岩组成的变质核。变质核北面和东面以拆离断层与盖层下部中新元古界相接触,并为中新元古界组成的韧性流变的中间层所环绕。变质核西面以阜新盆地东南缘边界正断层( 孙家湾- 稍户营子正断层) 与盖层上部以脆性变形为特征的白垩纪碎屑岩相邻。变质核杂岩的变形片理、线理及运动指向说明该变质核杂岩为对称型变质核杂岩。  相似文献   

2.
通过研究将辽西医巫闾山变质核杂岩构造要素划分为:变质核、拆离断层、中间过渡层、盖层和医巫闾山背形,并简述了其地质特征.采用X射线衍射法对医巫闾山花岗岩及周围不同时代岩石的不同层次变形构造开展了岩石组构特征研究,确定了韧-脆性构造变形时的力学性质和主应力方位,对变质核杂岩的形成演化进行了运动学和动力学分析.  相似文献   

3.
华南地区广泛出现的A型花岗岩或碱性侵入岩、双峰式火山岩、板内基性岩脉、沉积盆地以及变质核杂岩的年代学和地球化学研究表明,华南地区在中生代(约140~120 Ma)发生了大规模、区域性岩石圈伸展减薄事件[1,2].作为岩石圈减薄证据之一的变质核杂岩遍布华南地区,如庐山、武功山、洪镇、衡山、桃溪等变质核杂岩.  相似文献   

4.
在区域地质调查资料基础上,根据宏观与微观构造测量,通过分析区域岩浆活动性及其测年资料等,揭示了在辽南庄河栗子房地区存在另一个变质核杂岩构造,即栗子房变质核杂岩。该核杂岩具有3层结构和5个部分,即由新太古代变质深成岩及中生代花岗岩侵入体构成的下盘、由不同层次的构造岩组成的中部拆离断层带以及由前寒武纪沉积盖层和白垩纪伸展盆地构成的上盘。栗子房变质核杂岩形成于早白垩世,运动方向为上盘相对下盘由NWW向SEE方向运动,与辽南金州变质核杂岩和万福变质核杂岩在几何学、运动学极性和形成时间等方面具有很多相似性,形成于同一动力学背景。该变质核杂岩的厘定可为阐明华北克拉通东部晚中生代岩石圈减薄过程及岩石圈的力学和流变学属性提供依据。同时,变质核杂岩与金矿床成矿关系密切,栗子房变质核杂岩的拆离断层带附近可作为下一步金矿勘查的重点工作区,成矿潜力较大。  相似文献   

5.
藏南萨迦拉轨岗日变质核杂岩的厘定及其成因   总被引:28,自引:4,他引:24  
藏南拉轨岗日带出露一系列穹状隆起,具有变质核杂岩体典型的3层结构型式。变质核由拉轨岗日岩群变质杂岩及侵入其中的花岗岩组成,围绕变质核发育多层顺层拆离断层,盖层主要为晚古生代和中生代浅变质岩石。拉轨岗日变质核杂岩与高喜马拉雅变质核杂岩之间存在密切的时空联系,是喜马拉雅造山作用及相关隆升作用过程中发生热隆伸展的结果。  相似文献   

6.
辽西医巫闾山变质核杂岩构造系统及其对金矿的控制   总被引:6,自引:0,他引:6  
孟宪刚  冯向阳等 《地质通报》2002,21(12):841-847
医巫闾山变质核杂岩形成于白垩纪,属对称型变质核杂岩,中心为晚燕山期的医巫闾山二长花岗岩体,周围是代表地壳深部变形特点的太古宇变质岩组成的变质核。变质核北面和东面以拆离断层与盖层下部中元古界相接触,西面以阜新盆地东南缘边界正断层与白垩纪脆性变形碎屑岩相邻。在横剖面上变质核杂岩构造系统中的组合较齐全,且不同的构造带、构造部位对成矿和控矿作用不同,可分为:(1)产于拆离断层中深层次韧性流变层内的矿床——排山楼金矿;(2)产于拆离断层中浅层次韧性流变层内的矿床——大板金矿;(3)产于盖层下部韧-脆性构造层中的矿床——大樱桃沟金矿;(4)产于盖层上部脆性构造层中的矿床——五家子金矿。显示了变质核杂岩构造系统对该区金矿的控制作用。  相似文献   

7.
辽南变质核杂岩具有3层结构,由5部分构成,包括上盘异地岩块与半地堑状伸展盆地、下盘深成变质杂岩与同构造侵入岩体、介于上下盘之间的主拆离断层带共同构成。上盘异地岩块主要为新元古宙与古生界弱变形沉积岩系,岩层经历过印支期前伸展变形作用的改造。伸展盆地在辽南地区规模很小,仅局限于变质核杂岩的局部地段,其中发育了晚白垩世火山-沉积岩系。下盘变质杂岩由太古宙TTG片麻岩系为主,并有少量变质上壳岩系,它们被晚中生代时期同构造就位的二长花岗岩-花岗岩系侵入。拆离断层内发育了记录地壳不同层次拆离作用历史的各种不同类型的构造…  相似文献   

8.
单颗锆石UPb 年龄测定结果显示,星子变质核杂岩中的海会花岗岩岩体的形成年龄为122 Ma~130 Ma,表明星子变质核杂岩形成于中生代,这与当时华南岩石圈的伸展构造环境一致。花岗岩中1 723±348 Ma的残留锆石年代信息显示,海会花岗岩是由古元古代地壳重熔形成的。扬子古陆南缘确实存在古元古代的基底  相似文献   

9.
辽西医巫闾山变质核杂岩中间流变层变形特征   总被引:1,自引:1,他引:0  
医巫闾山变质核杂岩具有典型的三层结构:变质核、中间韧性流变层和上盘脆性变形的盖层。由中新元古界沉积岩系组成的韧性流变层是医巫闾山变质核杂岩的重要组成部分,它们主要分布在变质核杂岩东部、北部和南部一带,遭受了低绿片岩相的变形变质作用改造,其内发育了各种顺层流变组构。中间韧性流变层同构造石英脉的流体包裹体分析结果表明:均一温度为150~170℃,密度为0.96~0.98g/cm3,压力为40~50 MPa,形成深度为5~6 km。依据流体包裹体分析数据,结合显微构造特征分析,韧性流变层变形作用发生在地壳浅部层次低温低压环境中,以韧脆性变形机制为主。  相似文献   

10.
医巫闾山变质核杂岩中金矿及相关岩石的氢、氧、铅、硅、碳、硫稳定同位素测试结果为:成矿流体δD为-97‰~-72‰,δ18O为0.3‰~3.8‰,在δ18O-δD分布图上,位于变质水、岩浆水与当地雨水之间;其他稳定同位素数据及综合资料均说明,以排山楼金矿为代表的该区金矿成矿具有长期性、复杂性和多源性;医巫闾山变质核杂岩构造系统对区内金矿有一定控制作用.  相似文献   

11.
《Comptes Rendus Geoscience》2014,346(5-6):101-109
Numerical calculations of thermochemical convection in a rotating, electrically conducting fluid sphere with heterogeneous boundary conditions are used to model effects of asymmetric inner core growth. With heterogeneous inner core growth but no melting, outer core flow consists of intense convection where inner core buoyancy release is high, weak convection where inner core buoyancy release is low, and large scale, mostly westward flow in the form of spiraling gyres. With localized inner core melting, outer core flow includes a gravity current of dense fluid that spreads over the inner core boundary, analogous to the seismic F-layer. An analytical model for gravity currents on a sphere connects the structure of the dense layer to the distribution of inner core melting and solidification. Predictions for F-layer formation by asymmetric inner core growth include large-scale asymmetric gyres below the core-mantle boundary and eccentricity of the geomagnetic field.  相似文献   

12.
The coarsening rate of an initial grain structure is calculated and compared to the inner core growth rate. An estimate of the present size of the grains in the centre of the core varies from 560 m to 12 km, depending on the value taken for the diffusion coefficient of iron in the core. Regardless of the hypotheses chosen, this size is homogeneous inside the inner core.  相似文献   

13.
Using energy and entropy constraints applicable to the Earth's core, the heat flow at the core–mantle boundary (CMB) needed to sustain a given total dissipation in the core can be computed. Reasonable estimates for the present Joule dissipation in the core gives a present heat flow of 6 to 10 TW at the CMB. Palaeointensity data acquired from rocks younger than 3.5 Ga provide support that the Joule dissipation in the core before inner core crystallization was between today's value and four times lower than today. Prior to inner core crystallization (around 1 Ga), the magnetic field was maintained by thermal convection driven by core cooling, and our calculations of the two extreme cases predict that the heat flow at the CMB at that time was either 14 to 24 TW in the case of constant dissipation, or essentially the same as today in the lower field intensity case.  相似文献   

14.
15.
《Comptes Rendus Geoscience》2014,346(5-6):119-129
The improvements of the knowledge of the seismic structure of the inner core and the complexities thereby revealed ask for a dynamical origin. Sub-solidus convection was one of the early suggestions to explain the seismic anisotropy, but it requires an unstable density gradient either from thermal or compositional origin, or from both. Temperature and composition profiles in the inner core are computed using a unidimensional model of core evolution including diffusion in the inner core and fractional crystallisation at the inner core boundary (ICB). The thermal conductivity of the core has been recently revised upwardly and, moreover, found to increase with depth. Values of the heat flow across the core mantle boundary (CMB) sufficient to maintain convection in the whole outer core are not sufficient to make the temperature in the inner core super-isentropic and therefore prone to thermal instability. An unreasonably high CMB heat flow is necessary to this end. The compositional stratification results from a competition of the increase of the concentration of light elements in the outer core with inner core growth, which makes the inner core concentration also increase, and of the decrease of the liquidus, which makes the partition coefficient decrease as well as the concentration of light elements in the solid. While the latter (destabilizing) effect dominates at small inner core sizes, the former takes over for a large inner core. The turnover point is encountered for an inner core about half its current size in the case of S, but much larger for the case of O. The combined thermal and compositional buoyancy is stabilizing and solid-state convection in the inner core appears unlikely, unless an early double-diffusive instability can set in.  相似文献   

16.
17.
18.
19.
20.
《Comptes Rendus Geoscience》2014,346(5-6):130-139
The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe–X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid–liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner–outer core boundary, these petrological properties can be used to constrain the Earth's core properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号