共查询到20条相似文献,搜索用时 9 毫秒
1.
The exper imental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400 ℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper. The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle. The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin, Liaoning Province, and the orthopyrox... 相似文献
2.
对华北地震科学台阵的200个宽频带和甚宽带地震台站所记录的远震SKS(SKKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和叠加分析方法求得每一个台站的SKS(SKKS)快波偏振方向和快、慢波的时间延迟,并结合已发表的固定台站的结果,获得了华北上地幔各向异性图像.从得到结果看,华北东部各向异性快波方向基本为NWW-SEE方向,而西部的快波方向转到NW-SE或NNW-SSE.快、慢波时间延迟范围是0.50~1.47 s,华北西部的平均快、慢波时间延迟小于华北东部.在华北东部,快波方向与绝对板块运动(APM)方向基本一致,预示了NWW向的软流圈地幔流是引起该区域上地幔各向异性的主要原因,它使得上地幔橄榄岩等晶体的晶格优势取向沿地幔物质流动方向,从而导致了NWW趋向的快波方向.然而,在稳定的西部,快波方向既不与绝对板块运动方向一致,也不与构造走向一致,这种弱各向异性很可能是遗留在古老克拉通的厚的岩石圈内的"化石"各向异性. 相似文献
3.
UppermantleflowbeneaththeNorthwestofChinaanditslithosphericdynamicsJIAN-HUAHUANGI(黄建华);XIA-HUACHANGI(常筱华)andRONG-SHANFUI傅容珊)(... 相似文献
4.
显生宙以来华北克拉通岩石圈遭到破坏,这一现象的科学问题已受到世界地学家广泛关注.本文首先将地震层析成像反演得到的P波速度扰动转化为密度扰动,以此作为初始密度模型,然后利用布格重力异常反演得到了华北克拉通岩石圈高分辨三维密度结构.为了避开大型稀疏矩阵求逆计算,提高计算效率,我们将代数重构技术用于密度反演解算.反演结果表明:华北克拉通岩石圈密度在横向和纵向上均存在明显的不均匀性,密度分布形态与地表构造格局有很好的相关性;研究区地壳整体表现为低密度异常,地壳以下岩石圈部分则以高密度异常为主;鄂尔多斯块体地壳范围内以低密度异常为主,80~120 km深度上为呈南北两端集中分布的高密度异常,并分别与秦岭造山带和阴山造山带的高密度异常分布相连,这暗示了鄂尔多斯块体可能受到了来自其南北两端造山带深部动力学过程的影响;80~120 km深度上,华北克拉通东部地区呈现出显著的南北向非均匀的高密度异常,这表明遭到破坏后该地区上地幔物质分布具有强烈的南北向非均匀性. 相似文献
5.
华北克拉通岩石圈有效弹性厚度及其各向异性 总被引:2,自引:3,他引:2
华北克拉通是典型的克拉通破坏的区域,研究该区域的岩石圈有效弹性厚度(Te)及其各向异性特征有助于了解华北克拉通的强度构造及破坏机制.我们根据空间分辨率为30″×30″的地形数据和由自由空气异常解算得到的完全布格重力异常数据,利用Fan小波分析方法计算了两者之间的相关性,并基于Forsyth理论和正交各向异性薄板模型计算了华北克拉通地区的岩石圈Te和其各向异性分布情况.结果表明:(1) 从各向同性Te分布来看,华北克拉通岩石圈在东部、中部和西部存在着明显的差异.鄂尔多斯地块、河淮盆地的Te值均较高;中华北克拉通、南北重力梯度带及鲁西隆起Te值较低,约10~25 km;郯庐断裂带两侧Te有非常大的差异,西侧的Te明显小于东侧,推测郯庐断裂带在华北克拉通破坏过程中起着非常重要的作用.(2) 从Te的各向异性来看,不同块体Te各向异性的大小或方向存在差异,并且研究区内地震大多分布在Te各向异性大小或方向转变的区域.(3) 从地震波SKS各向异性和Te各向异性的比较来看,在华北克拉通西部阿拉善块体岩石圈变形趋于垂直连贯变形模式;鄂尔多斯地区各向异性源自历史构造事件的"化石"各向异性;山西裂谷带地区Te的弱轴方向和SKS的快波方向平行,而在山西裂谷带南部的秦岭—大别区域,SKS快波方向和Te弱轴方向相垂直,这可能与地幔热物质上涌等作用有关.此外,Te各向异性与现今构造应力场间的相关性不明显,体现出华北克拉通复杂的构造应力特征. 相似文献
6.
本文利用宽频流动台阵记录的远震波形资料和接收函数波动方程叠后偏移方法,获得了华北克拉通东北部边界及其邻近地区的地壳和地幔转换带的间断面结构图像.结果显示研究区域的地壳厚度存在显著的横向变化:以南北重力梯度带为界,西北部的兴蒙造山带地壳较厚(~40 km),东南部的燕山带、松辽盆地和辽东台隆地壳明显较薄(30~35 km).这有可能反映,研究区南北重力梯度带两侧地壳在中-新生代区域构造伸展过程中经历了不同程度的改造和减薄.地幔转换带成像结果显示,研究区410 km和660 km间断面结构存在横向差异.经度121°E-122°E之间,上地幔底部出现双重间断面,深度分别为660 km和690 km.经度122.5°E以东(北黄海地区),410 km间断面有5~20 km幅度的下沉,660 km间断面有5~15 km幅度的抬升;该地区地幔转换带厚度相对全球平均偏薄10~20 km,指示着该地区较热的上地幔底部温度环境.我们认为太平洋俯冲板块可能停滞在研究区119°E-122°E经度范围的地幔转换带中,但未延伸至118°E以西;而俯冲板块在124°E以东可能局部穿透了上地幔底部而进入下地幔,同时引起小尺度的地幔对流,导致北黄海地区下地幔物质的上涌. 相似文献
7.
The upper mantle flow beneath the North China Platform 总被引:2,自引:0,他引:2
In this paper we establish an upper mantle convection model which is constrained by regional isostatic gravity anomalies. Comparing the computed convection patterns with the tectonic features of the North China Platform we find that there are two positive anomaly centers connected with upward flows. These anomalies belong to the tectonic units of the Shan-Xi geoanticline and the Lu-Xi geoanticline. The centers of downward flows are connected with the tectonic units of the Liao-Ji geosyncline. It is reasonable to suggest that the upward mantle flows push the lithosphere upward and generate the observed positive isostatic gravity anomaly. The downward mantle flows pull the lithosphere down and generate the negative anomaly. However, the use of simple analysis makes it difficult to explain the complex lithospheric dynamics of this region. In order to understand lithospheric structures and tectonic features we must investigate the mechanical properties of the lithosphere and the relationship between the lithosphere and the mantle. These problems are discussed in the last section of this paper. 相似文献
8.
华北克拉通破坏存在空间上的差异性,至今其内在的动力学机制仍存在较大的争议,这种差异性在岩石圈热结构上必然有所表现.广义上岩石圈热结构包括热流结构、温度场结构和热岩石圈厚度,是揭示岩石圈演化及其内在动力学过程的重要基础.基于二维地震剖面和大地热流数据,建立二维稳态热传导有限元模型,对华北克拉通东部岩石圈热结构进行模拟计算并与西部进行对比分析,在此基础上对比热岩石圈与地震岩石圈厚度差异的变化.结果显示,华北克拉通东、西部岩石圈热结构有着较为明显的差异,地幔热流值波动范围分别在24~44/20.5~24.5 mW·m-2,壳幔比1.61~0.70/1.84~1.51,以1300℃等温线计算得到的热岩石圈厚度变化范围在75~139 km/128~162 km.华北克拉通东部相对西部有着较高的深部地幔热流值和较小的地震/热岩石圈厚度差异,这可能意味着东部软流圈地幔有效黏度相比西部低,估算差异可达2~3个数量级. 相似文献
9.
The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo- Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust. 相似文献
10.
Xiachen Zhi Zicheng Peng Daogong Chen Chunjiang Yu Weidong Sun Laurie Reisberg 《中国科学D辑(英文版)》2001,44(12):1110-1118
The basalt-borne peridotite xenoliths from Jiangsu-Anhui provinces were analyzed for whole rock Os isotopic compositions in
two laboratories of USTC, China and CRPG, France, respectively. The187Os/188Os ratio of the sample set ranges from 0.119 to 0.129 (25 samples, USTC) and from 0.117 to 0.131 (17 samples, CRPG). The Os
isotopic compositions of most samples are less than 0.129 and depleted relatively to the primitive mantle, showing a good
correlation with the major element compositions. With the187Os/188Os-Al2O3 alumichron, the samples yield a model age of 2.5 ± 0.1 Ga (data of USTC) and 1.9 ± 0.1 Ga (data of CRPG), late Archean to
early Pro-terozoic. The two samples with the lowest187Os/188Os ratio (0.119 and 0.117) have the TRD (Re depleted age) of 1.1 Ga (USTC) and 1.4 Ga (CRPG), mid-Proterozoic. The Os isotope model age shows that the peridotite
xenoliths from Cenozoic alkali basalt in Jiangsu-Anhui provinces have an old formation age (early- to mid- Proterozoic). They
are not newly produced mantle after the Phanerozoic replacement of the lithosphere mantle, but residual fractions of Proterozoic
mantle. 相似文献
11.
Jin-Hai Yu Suzanne Y. OReilly W. L. Griffin Xisheng Xu Ming Zhang Xinmin Zhou 《Journal of Volcanology and Geothermal Research》2003,122(3-4):165-189
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km. 相似文献
12.
通过处理ChinArray计划二期和三期台阵中823个台站的远震波形数据,共获得174 562个高质量的P波接收函数,采用接收函数共转换点(CCP)叠加方法开展华北克拉通中西部及其邻区的地幔转换带结构研究,获得了研究区地幔转换带的厚度分布。结果表明:研究区内地幔转换带厚度变化幅值在235—280 km范围内,具有分区特征;阿尔金断裂带东部和汉诺坝火山以北厚的转换带异常可能与冷的岩石圈拆沉有关;河套盆地和阴山造山带附近分布着相对薄的地幔转换带,这可能暗示了该地区存在热的地幔物质上涌或岩浆活动;渤海湾盆地下方厚的地幔转换带异常可能是冷的太平洋板片西向俯冲并滞留于地幔转换带所致。 相似文献
13.
14.
《中国科学:地球科学(英文版)》2021,(8)
The deep carbon cycle, which plays a critical role in mantle evolution and Earth habitability, is closely linked to the recycling of carbonate-bearing rocks through subduction. Marine carbonates are subducted to different depths during the closure of oceanic basins, thus carry important signatures of the disappeared oceanic basins. Petrological and geochemical features of the Hannuoba carbonatites in the northern North China Craton indicate that they were formed by melting of limestone subducted to mantle depths. Here, we show that detrital zircons carried by these carbonatites have a broad spectrum of U-Pb ages from Precambrian to Phanerozoic. Precambrian age peaks are at ~2.5 Ga, 2.1–2.3 Ga, 1.8–2.0 Ga, ~1.65 Ga, 1.3–1.4 Ga, ~1.1 Ga,0.91–0.94 Ga, 0.74–0.81 Ga, and 0.62–0.63 Ga, respectively. The recorded age peaks are different from those in the northern North China Craton and thus preclude an origin of crustal contamination. Nevertheless, the Precambrian age spectra are compatible with those of the Xingmeng Orogen in the southeastern Central Asian Orogenic Belt. Furthermore, the significantly positive εHf(t) values of 7.7–13.5 for the 300–373 Ma zircons are similar to those in the Xingmeng Orogen but different from those in the northern North China Craton. All these features suggest that the limestone precursor for the Hannuoba carbonatites was originated from the Paleo-Asian Ocean, and its deposition time was not earlier than 300 Ma. This indicates that the PaleoAsian Ocean still existed in the late Carboniferous to early Permian. The widespread distribution of metamorphic carbonates in the Central Asian Orogenic Belt indicates that there may have been widespread sedimentary carbonates in the Paleo-Asian Ocean. A large amount of sedimentary carbonates was probably carried into mantle during subduction of the Paleo-Asian oceanic slab, which significantly modified the chemical and physical properties of the lithospheric mantle. 相似文献
15.
Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China 总被引:1,自引:0,他引:1
The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and~(87)Sr/~(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and~(87)Sr/~(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and~(87)Sr/~(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton. 相似文献
16.
华北地区地壳上地幔S波三维速度结构 总被引:3,自引:0,他引:3
利用华北地区大型流动地震台阵的记录资料,采用近震和远震联合成像方法,得到了水平分辨率0.5°×0.5°、深至600km的S波速度结构.研究结果表明,上地壳S波速度结构与地表地质构造基本一致,燕山—太行山山脉均呈现高速异常,延庆—怀来盆地、大同盆地表现为低速异常,华北盆地内部的拗陷和隆起分别呈现低速和高速.唐山地区中地壳、山西裂陷盆地中下地壳存在明显的低速异常,可能分别与流体和热物质作用有关,有利于形成孕育强震的地质构造环境.90km的速度结构图像依然与地表的构造特征有较大的相关性,可能说明深部结构对地表构造有一定的控制作用.燕山隆起区岩石圈的厚度可达120~150km左右,华北盆地的岩石圈厚度可能在80km左右,太行山地区的岩石圈厚度介于两者之间.山西裂陷盆地上地幔低速层较厚,反映了该区不稳定的构造环境造成了地幔热物质的上涌.华北盆地下方220~320km出现的高速异常体,可能揭示了华北盆地上地幔仍然存在拆沉后残留的难熔、高密度的古老岩石圈地幔.研究区东部地幔转换带呈低速异常,推测可能与太平洋板块俯冲至该区下方地幔转换带前缘120°E左右的俯冲板块相变脱水有关. 相似文献
17.
采用远参考道和Robust技术,处理了华北地区14个地磁台站资料,得到了相干度超过0.8的地磁测深响应函数.并将其转换为大地电磁测深的响应函数,获取了105~107 s周期范围内的视电阻率和相位.应用ρ+理论对数据进行了一致性检验和反演,结果表明417 km,850 km深度附近可能存在电性间断面.同时采用基于一维最光滑模型的Occam反演方法得到了300~1000 km范围的地幔电性结构,并与前人在其他地区的研究结果进行了对比.发现华北地区地幔过渡带的电导率在大兴安岭—太行山重力梯度带东西两侧表现不同,重力梯度带附近及西侧台站下方过渡带深度的电导率和北美的Tucson地区相当,而华北地区东部的电导率在地幔过渡带范围高出西侧约2~5倍,这很可能和太平洋板块的俯冲有关. 相似文献
18.
收集华北克拉通地区188个宽频带流动台站观测资料进行处理.通过背景噪声面波数据和接收函数双重资料约束联合反演,得到了研究区沉积层厚度、地壳厚度及地壳S波速度结构.结果显示:(1)沉积盖层厚度与地质构造相对应,盆地区与隆起区分界明显.(2)研究区地壳厚度变化范围约29~46 km,自西向东逐渐变薄.(3)中、上地壳华北盆地S波速度偏高,可能与新生代以来多次沉降所造成的相对高的岩石强度有关;(4)下地壳S波速度显示研究区主要存在三个低速区,分别是唐山—天津周边、张北及太行山造山带地区;华北盆地存在显著高速异常,推测可能是由于华北盆地经历下地壳拆沉后,大规模的伸展作用相伴随的幔源基性铁镁质岩浆底侵至下地壳结晶所造成的.(5)多个发生过强震的区域表现出沉积层下方存在较大范围的(约10 km)高速体,并且高速体又被其下低S波速度包裹,壳内岩石强度的差异为应力积累及地震发生提供条件.
相似文献19.
观测表明,大陆地区存在很多传统均衡模型无法解释的现象,其根本原因在于传统均衡理论中没有考虑地幔岩石圈部分由于热结构差异导致密度差异的影响.本文基于岩石圈尺度的质量平衡模型研究了中国大陆20个构造单元地壳及地幔岩石圈对地形海拔的贡献,以及各块体的均衡状态.计算结果表明,在一些地区,如塔里木盆地、北山和柴达木盆地,尽管岩石圈均衡模型和Airy模型得到了一致的海拔值,但岩石圈均衡模型更能体现均衡过程的物理本质;除青藏高原造山带外的多数块体,岩石圈均衡模型的计算结果更接近观测海拔和地表垂直运动状态;总体上,考虑地幔岩石圈热结构影响后,中国大陆各地区的均衡结果普遍优于传统的均衡模型.通过对均衡状态分析,我们得到以下主要结论:(1)构造稳定地区均衡程度较高;(2) 青藏高原及周边造山带现今地壳运动主要为区域构造过程及深部动力学过程所控制,均衡调整过程不是主要控制因素;(3) 现今地壳垂直运动比较明显的块体处于均衡调整阶段,地表垂直运动的大小反映了该区所受的均衡力作用的程度;(4) 构造稳定地区基于岩石层均衡的理论计算海拔与观测海拔之差值和现今地壳垂直运动速率有较好的相关性,据此我们可以通过均衡分析研究构造块体的运动趋势和动力学性质;(5) 地幔热结构对现今地形、海拔及地壳垂直运动有显著影响,在处理均衡问题时,地幔岩石圈热结构是我们必须考虑的重要因素. 相似文献
20.
Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction 总被引:1,自引:0,他引:1
We picked new traveltime residual datasets in three frequency bands(0.02–0.1, 0.1–0.8, and 0.8–2.0 Hz) for P-waves from 793 teleseismic events and two frequency bands(0.02–0.1 and 0.1–0.8 Hz) for S-waves from 310 teleseismic events,recorded by 389 permanent stations of the China National Seismic Network and 832 broadband stations of 10 temporary arrays deployed in the North China Craton(NCC) region. The final datasets are composed of 65628 P-arrivals and 47050 S-arrivals.Based on previous research and our team's 2012 tomographic work, we constructed new three-dimensional P-velocity and Svelocity models of the NCC through some improvements, such as augmenting a much denser station coverage in the western NCC, considering the incident angle effect in crustal correction and using a multi-frequency joint inversion tomographic technique. The new velocity models provide several salient features, from which we draw possible inferences on regional dynamic processes. We observed high-velocity anomalies in the mantle transition zone(MTZ). Obvious morphological heterogeneities suggest buckling and/or fragmentation of the subducted Pacific slab, and some of the slab materials are visible below 660-km discontinuities. The velocity structure of the eastern NCC is dominated by small-scale lateral heterogeneities. At shallow depths, high-velocity anomalies beneath the southern part of the eastern NCC and the Yanshan region likely represent a remnant of cratonic lithosphere, which may suggest that the NCC destruction is spatially non-uniform. We also detected a highvelocity anomaly in the Sulu Orogen extending downward to ~300 km, which is seemingly controlled by the Tan-Lu Fault. The northern boundary of this anomaly spatially coincides with the Yantai-Qingdao-Wulian Fault, and is likely a remnant of the Yangtze cratonic lithosphere subducting northwestward. Significant low-velocity anomalies imaged beneath the central NCC show a spatial discordance between their northern and southern parts. The northern low-velocity anomaly extends downward to the top of MTZ with a lateral NW-SE strike, whereas the southern one tapers off at ~200–300 km. Low-velocity anomalies are present beneath the Phanerozoic orogenic belts surrounding the NCC, the Paleoproterozoic Trans-North China Orogen, and the Tan-Lu Fault. This feature not only shows excellent spatial correlation with the orogens at the surface, it also exhibits a consistent vertical continuity in a depth range of 60–250 km. This intriguing feature suggests that the collisional orogenic belts and Tan-Lu Fault are inherited weak zones, which may play a key role in craton destruction. By combining multidisciplinary results in this area, we suggest that the spatial heterogeneities associated with the NCC destruction most likely result from the combined effects of a spatially non-uniform distribution of wet upwellings triggered by the subducted Pacific slab and pre-existing weak zones in the cratonic lithosphere. 相似文献